Step |
Hyp |
Ref |
Expression |
1 |
|
mulsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
2 |
|
mulsproplem9.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
3 |
|
mulsproplem9.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
4 |
1 2 3
|
mulsproplem9 |
⊢ ( 𝜑 → ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) |
5 |
|
scutcut |
⊢ ( ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → ( ( ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ∈ No ∧ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) } ∧ { ( ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) } <<s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → ( ( ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ∈ No ∧ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) } ∧ { ( ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) } <<s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ) |
7 |
|
mulsval |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ) |
8 |
2 3 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ) |
9 |
8
|
eleq1d |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ∈ No ↔ ( ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ∈ No ) ) |
10 |
8
|
sneqd |
⊢ ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } = { ( ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) } ) |
11 |
10
|
breq2d |
⊢ ( 𝜑 → ( ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ↔ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) } ) ) |
12 |
10
|
breq1d |
⊢ ( 𝜑 → ( { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ { ( ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) } <<s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ) |
13 |
9 11 12
|
3anbi123d |
⊢ ( 𝜑 → ( ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ∧ { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ↔ ( ( ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ∈ No ∧ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) } ∧ { ( ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) } <<s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ) ) |
14 |
6 13
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ∧ { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ) |