Metamath Proof Explorer


Theorem mulsproplem2

Description: Lemma for surreal multiplication. Under the inductive hypothesis, the product of a member of the old set of A and B itself is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025)

Ref Expression
Hypotheses mulsproplem.1 ( 𝜑 → ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
mulsproplem2.1 ( 𝜑𝑋 ∈ ( O ‘ ( bday 𝐴 ) ) )
mulsproplem2.2 ( 𝜑𝐵 No )
Assertion mulsproplem2 ( 𝜑 → ( 𝑋 ·s 𝐵 ) ∈ No )

Proof

Step Hyp Ref Expression
1 mulsproplem.1 ( 𝜑 → ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
2 mulsproplem2.1 ( 𝜑𝑋 ∈ ( O ‘ ( bday 𝐴 ) ) )
3 mulsproplem2.2 ( 𝜑𝐵 No )
4 oldssno ( O ‘ ( bday 𝐴 ) ) ⊆ No
5 4 2 sselid ( 𝜑𝑋 No )
6 0sno 0s No
7 6 a1i ( 𝜑 → 0s No )
8 bday0s ( bday ‘ 0s ) = ∅
9 8 8 oveq12i ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) = ( ∅ +no ∅ )
10 0elon ∅ ∈ On
11 naddrid ( ∅ ∈ On → ( ∅ +no ∅ ) = ∅ )
12 10 11 ax-mp ( ∅ +no ∅ ) = ∅
13 9 12 eqtri ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) = ∅
14 13 13 uneq12i ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ) = ( ∅ ∪ ∅ )
15 un0 ( ∅ ∪ ∅ ) = ∅
16 14 15 eqtri ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ) = ∅
17 16 16 uneq12i ( ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ) ∪ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ) ) = ( ∅ ∪ ∅ )
18 17 15 eqtri ( ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ) ∪ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ) ) = ∅
19 18 uneq2i ( ( ( bday 𝑋 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ) ∪ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ) ) ) = ( ( ( bday 𝑋 ) +no ( bday 𝐵 ) ) ∪ ∅ )
20 un0 ( ( ( bday 𝑋 ) +no ( bday 𝐵 ) ) ∪ ∅ ) = ( ( bday 𝑋 ) +no ( bday 𝐵 ) )
21 19 20 eqtri ( ( ( bday 𝑋 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ) ∪ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ) ) ) = ( ( bday 𝑋 ) +no ( bday 𝐵 ) )
22 oldbdayim ( 𝑋 ∈ ( O ‘ ( bday 𝐴 ) ) → ( bday 𝑋 ) ∈ ( bday 𝐴 ) )
23 2 22 syl ( 𝜑 → ( bday 𝑋 ) ∈ ( bday 𝐴 ) )
24 bdayelon ( bday 𝑋 ) ∈ On
25 bdayelon ( bday 𝐴 ) ∈ On
26 bdayelon ( bday 𝐵 ) ∈ On
27 naddel1 ( ( ( bday 𝑋 ) ∈ On ∧ ( bday 𝐴 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( bday 𝑋 ) ∈ ( bday 𝐴 ) ↔ ( ( bday 𝑋 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
28 24 25 26 27 mp3an ( ( bday 𝑋 ) ∈ ( bday 𝐴 ) ↔ ( ( bday 𝑋 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
29 23 28 sylib ( 𝜑 → ( ( bday 𝑋 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
30 elun1 ( ( ( bday 𝑋 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) → ( ( bday 𝑋 ) +no ( bday 𝐵 ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
31 29 30 syl ( 𝜑 → ( ( bday 𝑋 ) +no ( bday 𝐵 ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
32 21 31 eqeltrid ( 𝜑 → ( ( ( bday 𝑋 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ) ∪ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
33 1 5 3 7 7 7 7 32 mulsproplem1 ( 𝜑 → ( ( 𝑋 ·s 𝐵 ) ∈ No ∧ ( ( 0s <s 0s ∧ 0s <s 0s ) → ( ( 0s ·s 0s ) -s ( 0s ·s 0s ) ) <s ( ( 0s ·s 0s ) -s ( 0s ·s 0s ) ) ) ) )
34 33 simpld ( 𝜑 → ( 𝑋 ·s 𝐵 ) ∈ No )