Step |
Hyp |
Ref |
Expression |
1 |
|
mulsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
2 |
|
mulsproplem7.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
3 |
|
mulsproplem7.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
4 |
|
mulsproplem7.3 |
⊢ ( 𝜑 → 𝑅 ∈ ( R ‘ 𝐴 ) ) |
5 |
|
mulsproplem7.4 |
⊢ ( 𝜑 → 𝑆 ∈ ( R ‘ 𝐵 ) ) |
6 |
|
mulsproplem7.5 |
⊢ ( 𝜑 → 𝑇 ∈ ( L ‘ 𝐴 ) ) |
7 |
|
mulsproplem7.6 |
⊢ ( 𝜑 → 𝑈 ∈ ( R ‘ 𝐵 ) ) |
8 |
|
rightssno |
⊢ ( R ‘ 𝐵 ) ⊆ No |
9 |
8 5
|
sselid |
⊢ ( 𝜑 → 𝑆 ∈ No ) |
10 |
8 7
|
sselid |
⊢ ( 𝜑 → 𝑈 ∈ No ) |
11 |
|
sltlin |
⊢ ( ( 𝑆 ∈ No ∧ 𝑈 ∈ No ) → ( 𝑆 <s 𝑈 ∨ 𝑆 = 𝑈 ∨ 𝑈 <s 𝑆 ) ) |
12 |
9 10 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 <s 𝑈 ∨ 𝑆 = 𝑈 ∨ 𝑈 <s 𝑆 ) ) |
13 |
|
rightssold |
⊢ ( R ‘ 𝐴 ) ⊆ ( O ‘ ( bday ‘ 𝐴 ) ) |
14 |
13 4
|
sselid |
⊢ ( 𝜑 → 𝑅 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
15 |
1 14 3
|
mulsproplem2 |
⊢ ( 𝜑 → ( 𝑅 ·s 𝐵 ) ∈ No ) |
16 |
|
rightssold |
⊢ ( R ‘ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝐵 ) ) |
17 |
16 5
|
sselid |
⊢ ( 𝜑 → 𝑆 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ) |
18 |
1 2 17
|
mulsproplem3 |
⊢ ( 𝜑 → ( 𝐴 ·s 𝑆 ) ∈ No ) |
19 |
15 18
|
addscld |
⊢ ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) ∈ No ) |
20 |
1 14 17
|
mulsproplem4 |
⊢ ( 𝜑 → ( 𝑅 ·s 𝑆 ) ∈ No ) |
21 |
19 20
|
subscld |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 <s 𝑈 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No ) |
23 |
|
leftssold |
⊢ ( L ‘ 𝐴 ) ⊆ ( O ‘ ( bday ‘ 𝐴 ) ) |
24 |
23 6
|
sselid |
⊢ ( 𝜑 → 𝑇 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
25 |
1 24 3
|
mulsproplem2 |
⊢ ( 𝜑 → ( 𝑇 ·s 𝐵 ) ∈ No ) |
26 |
25 18
|
addscld |
⊢ ( 𝜑 → ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) ∈ No ) |
27 |
1 24 17
|
mulsproplem4 |
⊢ ( 𝜑 → ( 𝑇 ·s 𝑆 ) ∈ No ) |
28 |
26 27
|
subscld |
⊢ ( 𝜑 → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑇 ·s 𝑆 ) ) ∈ No ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 <s 𝑈 ) → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑇 ·s 𝑆 ) ) ∈ No ) |
30 |
16 7
|
sselid |
⊢ ( 𝜑 → 𝑈 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ) |
31 |
1 2 30
|
mulsproplem3 |
⊢ ( 𝜑 → ( 𝐴 ·s 𝑈 ) ∈ No ) |
32 |
25 31
|
addscld |
⊢ ( 𝜑 → ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) ∈ No ) |
33 |
1 24 30
|
mulsproplem4 |
⊢ ( 𝜑 → ( 𝑇 ·s 𝑈 ) ∈ No ) |
34 |
32 33
|
subscld |
⊢ ( 𝜑 → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ∈ No ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 <s 𝑈 ) → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ∈ No ) |
36 |
|
lltropt |
⊢ ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) |
37 |
36
|
a1i |
⊢ ( 𝜑 → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ) |
38 |
37 6 4
|
ssltsepcd |
⊢ ( 𝜑 → 𝑇 <s 𝑅 ) |
39 |
|
ssltright |
⊢ ( 𝐵 ∈ No → { 𝐵 } <<s ( R ‘ 𝐵 ) ) |
40 |
3 39
|
syl |
⊢ ( 𝜑 → { 𝐵 } <<s ( R ‘ 𝐵 ) ) |
41 |
|
snidg |
⊢ ( 𝐵 ∈ No → 𝐵 ∈ { 𝐵 } ) |
42 |
3 41
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ { 𝐵 } ) |
43 |
40 42 5
|
ssltsepcd |
⊢ ( 𝜑 → 𝐵 <s 𝑆 ) |
44 |
|
0sno |
⊢ 0s ∈ No |
45 |
44
|
a1i |
⊢ ( 𝜑 → 0s ∈ No ) |
46 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
47 |
46 6
|
sselid |
⊢ ( 𝜑 → 𝑇 ∈ No ) |
48 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
49 |
48 4
|
sselid |
⊢ ( 𝜑 → 𝑅 ∈ No ) |
50 |
|
bday0s |
⊢ ( bday ‘ 0s ) = ∅ |
51 |
50 50
|
oveq12i |
⊢ ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) = ( ∅ +no ∅ ) |
52 |
|
0elon |
⊢ ∅ ∈ On |
53 |
|
naddrid |
⊢ ( ∅ ∈ On → ( ∅ +no ∅ ) = ∅ ) |
54 |
52 53
|
ax-mp |
⊢ ( ∅ +no ∅ ) = ∅ |
55 |
51 54
|
eqtri |
⊢ ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) = ∅ |
56 |
55
|
uneq1i |
⊢ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ) = ( ∅ ∪ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
57 |
|
0un |
⊢ ( ∅ ∪ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ) = ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) |
58 |
56 57
|
eqtri |
⊢ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ) = ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) |
59 |
|
oldbdayim |
⊢ ( 𝑇 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) → ( bday ‘ 𝑇 ) ∈ ( bday ‘ 𝐴 ) ) |
60 |
24 59
|
syl |
⊢ ( 𝜑 → ( bday ‘ 𝑇 ) ∈ ( bday ‘ 𝐴 ) ) |
61 |
|
bdayelon |
⊢ ( bday ‘ 𝑇 ) ∈ On |
62 |
|
bdayelon |
⊢ ( bday ‘ 𝐴 ) ∈ On |
63 |
|
bdayelon |
⊢ ( bday ‘ 𝐵 ) ∈ On |
64 |
|
naddel1 |
⊢ ( ( ( bday ‘ 𝑇 ) ∈ On ∧ ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( bday ‘ 𝑇 ) ∈ ( bday ‘ 𝐴 ) ↔ ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
65 |
61 62 63 64
|
mp3an |
⊢ ( ( bday ‘ 𝑇 ) ∈ ( bday ‘ 𝐴 ) ↔ ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
66 |
60 65
|
sylib |
⊢ ( 𝜑 → ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
67 |
|
oldbdayim |
⊢ ( 𝑅 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) → ( bday ‘ 𝑅 ) ∈ ( bday ‘ 𝐴 ) ) |
68 |
14 67
|
syl |
⊢ ( 𝜑 → ( bday ‘ 𝑅 ) ∈ ( bday ‘ 𝐴 ) ) |
69 |
|
oldbdayim |
⊢ ( 𝑆 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) → ( bday ‘ 𝑆 ) ∈ ( bday ‘ 𝐵 ) ) |
70 |
17 69
|
syl |
⊢ ( 𝜑 → ( bday ‘ 𝑆 ) ∈ ( bday ‘ 𝐵 ) ) |
71 |
|
naddel12 |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( ( bday ‘ 𝑅 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑆 ) ∈ ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
72 |
62 63 71
|
mp2an |
⊢ ( ( ( bday ‘ 𝑅 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑆 ) ∈ ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
73 |
68 70 72
|
syl2anc |
⊢ ( 𝜑 → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
74 |
66 73
|
jca |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
75 |
|
naddel12 |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( ( bday ‘ 𝑇 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑆 ) ∈ ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
76 |
62 63 75
|
mp2an |
⊢ ( ( ( bday ‘ 𝑇 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑆 ) ∈ ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
77 |
60 70 76
|
syl2anc |
⊢ ( 𝜑 → ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
78 |
|
bdayelon |
⊢ ( bday ‘ 𝑅 ) ∈ On |
79 |
|
naddel1 |
⊢ ( ( ( bday ‘ 𝑅 ) ∈ On ∧ ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( bday ‘ 𝑅 ) ∈ ( bday ‘ 𝐴 ) ↔ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
80 |
78 62 63 79
|
mp3an |
⊢ ( ( bday ‘ 𝑅 ) ∈ ( bday ‘ 𝐴 ) ↔ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
81 |
68 80
|
sylib |
⊢ ( 𝜑 → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
82 |
77 81
|
jca |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
83 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑇 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) |
84 |
61 63 83
|
mp2an |
⊢ ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∈ On |
85 |
|
bdayelon |
⊢ ( bday ‘ 𝑆 ) ∈ On |
86 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑅 ) ∈ On ∧ ( bday ‘ 𝑆 ) ∈ On ) → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ On ) |
87 |
78 85 86
|
mp2an |
⊢ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ On |
88 |
84 87
|
onun2i |
⊢ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ On |
89 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑇 ) ∈ On ∧ ( bday ‘ 𝑆 ) ∈ On ) → ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∈ On ) |
90 |
61 85 89
|
mp2an |
⊢ ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∈ On |
91 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑅 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) |
92 |
78 63 91
|
mp2an |
⊢ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ On |
93 |
90 92
|
onun2i |
⊢ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ On |
94 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) |
95 |
62 63 94
|
mp2an |
⊢ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On |
96 |
|
onunel |
⊢ ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ On ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
97 |
88 93 95 96
|
mp3an |
⊢ ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
98 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∈ On ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
99 |
84 87 95 98
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
100 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∈ On ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
101 |
90 92 95 100
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
102 |
99 101
|
anbi12i |
⊢ ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ↔ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
103 |
97 102
|
bitri |
⊢ ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
104 |
74 82 103
|
sylanbrc |
⊢ ( 𝜑 → ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
105 |
|
elun1 |
⊢ ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) → ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
106 |
104 105
|
syl |
⊢ ( 𝜑 → ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
107 |
58 106
|
eqeltrid |
⊢ ( 𝜑 → ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
108 |
1 45 45 47 49 3 9 107
|
mulsproplem1 |
⊢ ( 𝜑 → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝑇 <s 𝑅 ∧ 𝐵 <s 𝑆 ) → ( ( 𝑇 ·s 𝑆 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ) ) ) |
109 |
108
|
simprd |
⊢ ( 𝜑 → ( ( 𝑇 <s 𝑅 ∧ 𝐵 <s 𝑆 ) → ( ( 𝑇 ·s 𝑆 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ) ) |
110 |
38 43 109
|
mp2and |
⊢ ( 𝜑 → ( ( 𝑇 ·s 𝑆 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ) |
111 |
27 25 20 15
|
sltsubsub2bd |
⊢ ( 𝜑 → ( ( ( 𝑇 ·s 𝑆 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ↔ ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑆 ) ) ) ) |
112 |
15 20
|
subscld |
⊢ ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No ) |
113 |
25 27
|
subscld |
⊢ ( 𝜑 → ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑆 ) ) ∈ No ) |
114 |
112 113 18
|
sltadd1d |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑆 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) ) |
115 |
111 114
|
bitrd |
⊢ ( 𝜑 → ( ( ( 𝑇 ·s 𝑆 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) ) |
116 |
110 115
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) |
117 |
15 18 20
|
addsubsd |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) = ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) |
118 |
25 18 27
|
addsubsd |
⊢ ( 𝜑 → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑇 ·s 𝑆 ) ) = ( ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) |
119 |
116 117 118
|
3brtr4d |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑇 ·s 𝑆 ) ) ) |
120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 <s 𝑈 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑇 ·s 𝑆 ) ) ) |
121 |
|
ssltleft |
⊢ ( 𝐴 ∈ No → ( L ‘ 𝐴 ) <<s { 𝐴 } ) |
122 |
2 121
|
syl |
⊢ ( 𝜑 → ( L ‘ 𝐴 ) <<s { 𝐴 } ) |
123 |
|
snidg |
⊢ ( 𝐴 ∈ No → 𝐴 ∈ { 𝐴 } ) |
124 |
2 123
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 } ) |
125 |
122 6 124
|
ssltsepcd |
⊢ ( 𝜑 → 𝑇 <s 𝐴 ) |
126 |
55
|
uneq1i |
⊢ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ) ) = ( ∅ ∪ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ) ) |
127 |
|
0un |
⊢ ( ∅ ∪ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ) ) = ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ) |
128 |
126 127
|
eqtri |
⊢ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ) ) = ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ) |
129 |
|
oldbdayim |
⊢ ( 𝑈 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) → ( bday ‘ 𝑈 ) ∈ ( bday ‘ 𝐵 ) ) |
130 |
30 129
|
syl |
⊢ ( 𝜑 → ( bday ‘ 𝑈 ) ∈ ( bday ‘ 𝐵 ) ) |
131 |
|
bdayelon |
⊢ ( bday ‘ 𝑈 ) ∈ On |
132 |
|
naddel2 |
⊢ ( ( ( bday ‘ 𝑈 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ∧ ( bday ‘ 𝐴 ) ∈ On ) → ( ( bday ‘ 𝑈 ) ∈ ( bday ‘ 𝐵 ) ↔ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
133 |
131 63 62 132
|
mp3an |
⊢ ( ( bday ‘ 𝑈 ) ∈ ( bday ‘ 𝐵 ) ↔ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
134 |
130 133
|
sylib |
⊢ ( 𝜑 → ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
135 |
77 134
|
jca |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
136 |
|
naddel12 |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( ( bday ‘ 𝑇 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑈 ) ∈ ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
137 |
62 63 136
|
mp2an |
⊢ ( ( ( bday ‘ 𝑇 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑈 ) ∈ ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
138 |
60 130 137
|
syl2anc |
⊢ ( 𝜑 → ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
139 |
|
naddel2 |
⊢ ( ( ( bday ‘ 𝑆 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ∧ ( bday ‘ 𝐴 ) ∈ On ) → ( ( bday ‘ 𝑆 ) ∈ ( bday ‘ 𝐵 ) ↔ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
140 |
85 63 62 139
|
mp3an |
⊢ ( ( bday ‘ 𝑆 ) ∈ ( bday ‘ 𝐵 ) ↔ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
141 |
70 140
|
sylib |
⊢ ( 𝜑 → ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
142 |
138 141
|
jca |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
143 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝑈 ) ∈ On ) → ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∈ On ) |
144 |
62 131 143
|
mp2an |
⊢ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∈ On |
145 |
90 144
|
onun2i |
⊢ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∈ On |
146 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑇 ) ∈ On ∧ ( bday ‘ 𝑈 ) ∈ On ) → ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∈ On ) |
147 |
61 131 146
|
mp2an |
⊢ ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∈ On |
148 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝑆 ) ∈ On ) → ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ On ) |
149 |
62 85 148
|
mp2an |
⊢ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ On |
150 |
147 149
|
onun2i |
⊢ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ∈ On |
151 |
|
onunel |
⊢ ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∈ On ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
152 |
145 150 95 151
|
mp3an |
⊢ ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
153 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
154 |
90 144 95 153
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
155 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
156 |
147 149 95 155
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
157 |
154 156
|
anbi12i |
⊢ ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ↔ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
158 |
152 157
|
bitri |
⊢ ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
159 |
135 142 158
|
sylanbrc |
⊢ ( 𝜑 → ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
160 |
|
elun1 |
⊢ ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) → ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
161 |
159 160
|
syl |
⊢ ( 𝜑 → ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
162 |
128 161
|
eqeltrid |
⊢ ( 𝜑 → ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
163 |
1 45 45 47 2 9 10 162
|
mulsproplem1 |
⊢ ( 𝜑 → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝑇 <s 𝐴 ∧ 𝑆 <s 𝑈 ) → ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝐴 ·s 𝑆 ) ) ) ) ) |
164 |
163
|
simprd |
⊢ ( 𝜑 → ( ( 𝑇 <s 𝐴 ∧ 𝑆 <s 𝑈 ) → ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝐴 ·s 𝑆 ) ) ) ) |
165 |
125 164
|
mpand |
⊢ ( 𝜑 → ( 𝑆 <s 𝑈 → ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝐴 ·s 𝑆 ) ) ) ) |
166 |
165
|
imp |
⊢ ( ( 𝜑 ∧ 𝑆 <s 𝑈 ) → ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝐴 ·s 𝑆 ) ) ) |
167 |
33 31 27 18
|
sltsubsub3bd |
⊢ ( 𝜑 → ( ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝐴 ·s 𝑆 ) ) ↔ ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ) ) |
168 |
18 27
|
subscld |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) ∈ No ) |
169 |
31 33
|
subscld |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ∈ No ) |
170 |
168 169 25
|
sltadd2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ↔ ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) ) <s ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ) ) ) |
171 |
167 170
|
bitrd |
⊢ ( 𝜑 → ( ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝐴 ·s 𝑆 ) ) ↔ ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) ) <s ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ) ) ) |
172 |
171
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 <s 𝑈 ) → ( ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝐴 ·s 𝑆 ) ) ↔ ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) ) <s ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ) ) ) |
173 |
166 172
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑆 <s 𝑈 ) → ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) ) <s ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ) ) |
174 |
25 18 27
|
addsubsassd |
⊢ ( 𝜑 → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑇 ·s 𝑆 ) ) = ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) ) ) |
175 |
174
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 <s 𝑈 ) → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑇 ·s 𝑆 ) ) = ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) ) ) |
176 |
25 31 33
|
addsubsassd |
⊢ ( 𝜑 → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) = ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ) ) |
177 |
176
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 <s 𝑈 ) → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) = ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ) ) |
178 |
173 175 177
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑆 <s 𝑈 ) → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ) |
179 |
22 29 35 120 178
|
slttrd |
⊢ ( ( 𝜑 ∧ 𝑆 <s 𝑈 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ) |
180 |
179
|
ex |
⊢ ( 𝜑 → ( 𝑆 <s 𝑈 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ) ) |
181 |
40 42 7
|
ssltsepcd |
⊢ ( 𝜑 → 𝐵 <s 𝑈 ) |
182 |
55
|
uneq1i |
⊢ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ) = ( ∅ ∪ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
183 |
|
0un |
⊢ ( ∅ ∪ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ) = ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) |
184 |
182 183
|
eqtri |
⊢ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ) = ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) |
185 |
|
naddel12 |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( ( bday ‘ 𝑅 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑈 ) ∈ ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
186 |
62 63 185
|
mp2an |
⊢ ( ( ( bday ‘ 𝑅 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑈 ) ∈ ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
187 |
68 130 186
|
syl2anc |
⊢ ( 𝜑 → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
188 |
66 187
|
jca |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
189 |
138 81
|
jca |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
190 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑅 ) ∈ On ∧ ( bday ‘ 𝑈 ) ∈ On ) → ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ∈ On ) |
191 |
78 131 190
|
mp2an |
⊢ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ∈ On |
192 |
84 191
|
onun2i |
⊢ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∈ On |
193 |
147 92
|
onun2i |
⊢ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ On |
194 |
|
onunel |
⊢ ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∈ On ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
195 |
192 193 95 194
|
mp3an |
⊢ ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
196 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∈ On ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
197 |
84 191 95 196
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
198 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∈ On ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
199 |
147 92 95 198
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
200 |
197 199
|
anbi12i |
⊢ ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ↔ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
201 |
195 200
|
bitri |
⊢ ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ∧ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
202 |
188 189 201
|
sylanbrc |
⊢ ( 𝜑 → ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
203 |
|
elun1 |
⊢ ( ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) → ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
204 |
202 203
|
syl |
⊢ ( 𝜑 → ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
205 |
184 204
|
eqeltrid |
⊢ ( 𝜑 → ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∪ ( ( ( bday ‘ 𝑇 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝐵 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
206 |
1 45 45 47 49 3 10 205
|
mulsproplem1 |
⊢ ( 𝜑 → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝑇 <s 𝑅 ∧ 𝐵 <s 𝑈 ) → ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑈 ) -s ( 𝑅 ·s 𝐵 ) ) ) ) ) |
207 |
206
|
simprd |
⊢ ( 𝜑 → ( ( 𝑇 <s 𝑅 ∧ 𝐵 <s 𝑈 ) → ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑈 ) -s ( 𝑅 ·s 𝐵 ) ) ) ) |
208 |
38 181 207
|
mp2and |
⊢ ( 𝜑 → ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑈 ) -s ( 𝑅 ·s 𝐵 ) ) ) |
209 |
1 14 30
|
mulsproplem4 |
⊢ ( 𝜑 → ( 𝑅 ·s 𝑈 ) ∈ No ) |
210 |
33 25 209 15
|
sltsubsub2bd |
⊢ ( 𝜑 → ( ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑈 ) -s ( 𝑅 ·s 𝐵 ) ) ↔ ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑈 ) ) <s ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑈 ) ) ) ) |
211 |
15 209
|
subscld |
⊢ ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑈 ) ) ∈ No ) |
212 |
25 33
|
subscld |
⊢ ( 𝜑 → ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑈 ) ) ∈ No ) |
213 |
211 212 31
|
sltadd1d |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑈 ) ) <s ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑈 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑈 ) ) +s ( 𝐴 ·s 𝑈 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑈 ) ) +s ( 𝐴 ·s 𝑈 ) ) ) ) |
214 |
210 213
|
bitrd |
⊢ ( 𝜑 → ( ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑈 ) -s ( 𝑅 ·s 𝐵 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑈 ) ) +s ( 𝐴 ·s 𝑈 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑈 ) ) +s ( 𝐴 ·s 𝑈 ) ) ) ) |
215 |
208 214
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑈 ) ) +s ( 𝐴 ·s 𝑈 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑈 ) ) +s ( 𝐴 ·s 𝑈 ) ) ) |
216 |
15 31 209
|
addsubsd |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) = ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑈 ) ) +s ( 𝐴 ·s 𝑈 ) ) ) |
217 |
25 31 33
|
addsubsd |
⊢ ( 𝜑 → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) = ( ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑈 ) ) +s ( 𝐴 ·s 𝑈 ) ) ) |
218 |
215 216 217
|
3brtr4d |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ) |
219 |
|
oveq2 |
⊢ ( 𝑆 = 𝑈 → ( 𝐴 ·s 𝑆 ) = ( 𝐴 ·s 𝑈 ) ) |
220 |
219
|
oveq2d |
⊢ ( 𝑆 = 𝑈 → ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) = ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) ) |
221 |
|
oveq2 |
⊢ ( 𝑆 = 𝑈 → ( 𝑅 ·s 𝑆 ) = ( 𝑅 ·s 𝑈 ) ) |
222 |
220 221
|
oveq12d |
⊢ ( 𝑆 = 𝑈 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) = ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) ) |
223 |
222
|
breq1d |
⊢ ( 𝑆 = 𝑈 → ( ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ) ) |
224 |
218 223
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑆 = 𝑈 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ) ) |
225 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 <s 𝑆 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No ) |
226 |
15 31
|
addscld |
⊢ ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) ∈ No ) |
227 |
226 209
|
subscld |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) ∈ No ) |
228 |
227
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 <s 𝑆 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) ∈ No ) |
229 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 <s 𝑆 ) → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ∈ No ) |
230 |
|
ssltright |
⊢ ( 𝐴 ∈ No → { 𝐴 } <<s ( R ‘ 𝐴 ) ) |
231 |
2 230
|
syl |
⊢ ( 𝜑 → { 𝐴 } <<s ( R ‘ 𝐴 ) ) |
232 |
231 124 4
|
ssltsepcd |
⊢ ( 𝜑 → 𝐴 <s 𝑅 ) |
233 |
55
|
uneq1i |
⊢ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ) ) = ( ∅ ∪ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ) ) |
234 |
|
0un |
⊢ ( ∅ ∪ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ) ) = ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ) |
235 |
233 234
|
eqtri |
⊢ ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ) ) = ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ) |
236 |
134 73
|
jca |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
237 |
141 187
|
jca |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
238 |
144 87
|
onun2i |
⊢ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ On |
239 |
149 191
|
onun2i |
⊢ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∈ On |
240 |
|
onunel |
⊢ ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ On ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
241 |
238 239 95 240
|
mp3an |
⊢ ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
242 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∈ On ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
243 |
144 87 95 242
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
244 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ On ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
245 |
149 191 95 244
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
246 |
243 245
|
anbi12i |
⊢ ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ↔ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
247 |
241 246
|
bitri |
⊢ ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ∧ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∧ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) ) |
248 |
236 237 247
|
sylanbrc |
⊢ ( 𝜑 → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
249 |
|
elun1 |
⊢ ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
250 |
248 249
|
syl |
⊢ ( 𝜑 → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
251 |
235 250
|
eqeltrid |
⊢ ( 𝜑 → ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑈 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑆 ) ) ) ∪ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑆 ) ) ∪ ( ( bday ‘ 𝑅 ) +no ( bday ‘ 𝑈 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) ) |
252 |
1 45 45 2 49 10 9 251
|
mulsproplem1 |
⊢ ( 𝜑 → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝐴 <s 𝑅 ∧ 𝑈 <s 𝑆 ) → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑈 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑈 ) ) ) ) ) |
253 |
252
|
simprd |
⊢ ( 𝜑 → ( ( 𝐴 <s 𝑅 ∧ 𝑈 <s 𝑆 ) → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑈 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑈 ) ) ) ) |
254 |
232 253
|
mpand |
⊢ ( 𝜑 → ( 𝑈 <s 𝑆 → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑈 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑈 ) ) ) ) |
255 |
254
|
imp |
⊢ ( ( 𝜑 ∧ 𝑈 <s 𝑆 ) → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑈 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑈 ) ) ) |
256 |
18 20 31 209
|
sltsubsubbd |
⊢ ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑈 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑈 ) ) ↔ ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ) ) |
257 |
18 20
|
subscld |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No ) |
258 |
31 209
|
subscld |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ∈ No ) |
259 |
257 258 15
|
sltadd2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ↔ ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) <s ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ) ) ) |
260 |
256 259
|
bitrd |
⊢ ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑈 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑈 ) ) ↔ ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) <s ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ) ) ) |
261 |
260
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 <s 𝑆 ) → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑈 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑈 ) ) ↔ ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) <s ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ) ) ) |
262 |
255 261
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑈 <s 𝑆 ) → ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) <s ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ) ) |
263 |
15 18 20
|
addsubsassd |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) = ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) ) |
264 |
263
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 <s 𝑆 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) = ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) ) |
265 |
15 31 209
|
addsubsassd |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) = ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ) ) |
266 |
265
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 <s 𝑆 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) = ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ) ) |
267 |
262 264 266
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑈 <s 𝑆 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) ) |
268 |
218
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 <s 𝑆 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ) |
269 |
225 228 229 267 268
|
slttrd |
⊢ ( ( 𝜑 ∧ 𝑈 <s 𝑆 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ) |
270 |
269
|
ex |
⊢ ( 𝜑 → ( 𝑈 <s 𝑆 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ) ) |
271 |
180 224 270
|
3jaod |
⊢ ( 𝜑 → ( ( 𝑆 <s 𝑈 ∨ 𝑆 = 𝑈 ∨ 𝑈 <s 𝑆 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ) ) |
272 |
12 271
|
mpd |
⊢ ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ) |