Metamath Proof Explorer


Theorem mulsproplem7

Description: Lemma for surreal multiplication. Show one of the inequalities involved in surreal multiplication's cuts. (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Hypotheses mulsproplem.1 ( 𝜑 → ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
mulsproplem7.1 ( 𝜑𝐴 No )
mulsproplem7.2 ( 𝜑𝐵 No )
mulsproplem7.3 ( 𝜑𝑅 ∈ ( R ‘ 𝐴 ) )
mulsproplem7.4 ( 𝜑𝑆 ∈ ( R ‘ 𝐵 ) )
mulsproplem7.5 ( 𝜑𝑇 ∈ ( L ‘ 𝐴 ) )
mulsproplem7.6 ( 𝜑𝑈 ∈ ( R ‘ 𝐵 ) )
Assertion mulsproplem7 ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) )

Proof

Step Hyp Ref Expression
1 mulsproplem.1 ( 𝜑 → ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
2 mulsproplem7.1 ( 𝜑𝐴 No )
3 mulsproplem7.2 ( 𝜑𝐵 No )
4 mulsproplem7.3 ( 𝜑𝑅 ∈ ( R ‘ 𝐴 ) )
5 mulsproplem7.4 ( 𝜑𝑆 ∈ ( R ‘ 𝐵 ) )
6 mulsproplem7.5 ( 𝜑𝑇 ∈ ( L ‘ 𝐴 ) )
7 mulsproplem7.6 ( 𝜑𝑈 ∈ ( R ‘ 𝐵 ) )
8 rightssno ( R ‘ 𝐵 ) ⊆ No
9 8 5 sselid ( 𝜑𝑆 No )
10 8 7 sselid ( 𝜑𝑈 No )
11 sltlin ( ( 𝑆 No 𝑈 No ) → ( 𝑆 <s 𝑈𝑆 = 𝑈𝑈 <s 𝑆 ) )
12 9 10 11 syl2anc ( 𝜑 → ( 𝑆 <s 𝑈𝑆 = 𝑈𝑈 <s 𝑆 ) )
13 rightssold ( R ‘ 𝐴 ) ⊆ ( O ‘ ( bday 𝐴 ) )
14 13 4 sselid ( 𝜑𝑅 ∈ ( O ‘ ( bday 𝐴 ) ) )
15 1 14 3 mulsproplem2 ( 𝜑 → ( 𝑅 ·s 𝐵 ) ∈ No )
16 rightssold ( R ‘ 𝐵 ) ⊆ ( O ‘ ( bday 𝐵 ) )
17 16 5 sselid ( 𝜑𝑆 ∈ ( O ‘ ( bday 𝐵 ) ) )
18 1 2 17 mulsproplem3 ( 𝜑 → ( 𝐴 ·s 𝑆 ) ∈ No )
19 15 18 addscld ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) ∈ No )
20 1 14 17 mulsproplem4 ( 𝜑 → ( 𝑅 ·s 𝑆 ) ∈ No )
21 19 20 subscld ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No )
22 21 adantr ( ( 𝜑𝑆 <s 𝑈 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No )
23 leftssold ( L ‘ 𝐴 ) ⊆ ( O ‘ ( bday 𝐴 ) )
24 23 6 sselid ( 𝜑𝑇 ∈ ( O ‘ ( bday 𝐴 ) ) )
25 1 24 3 mulsproplem2 ( 𝜑 → ( 𝑇 ·s 𝐵 ) ∈ No )
26 25 18 addscld ( 𝜑 → ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) ∈ No )
27 1 24 17 mulsproplem4 ( 𝜑 → ( 𝑇 ·s 𝑆 ) ∈ No )
28 26 27 subscld ( 𝜑 → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑇 ·s 𝑆 ) ) ∈ No )
29 28 adantr ( ( 𝜑𝑆 <s 𝑈 ) → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑇 ·s 𝑆 ) ) ∈ No )
30 16 7 sselid ( 𝜑𝑈 ∈ ( O ‘ ( bday 𝐵 ) ) )
31 1 2 30 mulsproplem3 ( 𝜑 → ( 𝐴 ·s 𝑈 ) ∈ No )
32 25 31 addscld ( 𝜑 → ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) ∈ No )
33 1 24 30 mulsproplem4 ( 𝜑 → ( 𝑇 ·s 𝑈 ) ∈ No )
34 32 33 subscld ( 𝜑 → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ∈ No )
35 34 adantr ( ( 𝜑𝑆 <s 𝑈 ) → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ∈ No )
36 lltropt ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 )
37 36 a1i ( 𝜑 → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) )
38 37 6 4 ssltsepcd ( 𝜑𝑇 <s 𝑅 )
39 ssltright ( 𝐵 No → { 𝐵 } <<s ( R ‘ 𝐵 ) )
40 3 39 syl ( 𝜑 → { 𝐵 } <<s ( R ‘ 𝐵 ) )
41 snidg ( 𝐵 No 𝐵 ∈ { 𝐵 } )
42 3 41 syl ( 𝜑𝐵 ∈ { 𝐵 } )
43 40 42 5 ssltsepcd ( 𝜑𝐵 <s 𝑆 )
44 0sno 0s No
45 44 a1i ( 𝜑 → 0s No )
46 leftssno ( L ‘ 𝐴 ) ⊆ No
47 46 6 sselid ( 𝜑𝑇 No )
48 rightssno ( R ‘ 𝐴 ) ⊆ No
49 48 4 sselid ( 𝜑𝑅 No )
50 bday0s ( bday ‘ 0s ) = ∅
51 50 50 oveq12i ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) = ( ∅ +no ∅ )
52 0elon ∅ ∈ On
53 naddrid ( ∅ ∈ On → ( ∅ +no ∅ ) = ∅ )
54 52 53 ax-mp ( ∅ +no ∅ ) = ∅
55 51 54 eqtri ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) = ∅
56 55 uneq1i ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ) = ( ∅ ∪ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) )
57 0un ( ∅ ∪ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ) = ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) )
58 56 57 eqtri ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ) = ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) )
59 oldbdayim ( 𝑇 ∈ ( O ‘ ( bday 𝐴 ) ) → ( bday 𝑇 ) ∈ ( bday 𝐴 ) )
60 24 59 syl ( 𝜑 → ( bday 𝑇 ) ∈ ( bday 𝐴 ) )
61 bdayelon ( bday 𝑇 ) ∈ On
62 bdayelon ( bday 𝐴 ) ∈ On
63 bdayelon ( bday 𝐵 ) ∈ On
64 naddel1 ( ( ( bday 𝑇 ) ∈ On ∧ ( bday 𝐴 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( bday 𝑇 ) ∈ ( bday 𝐴 ) ↔ ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
65 61 62 63 64 mp3an ( ( bday 𝑇 ) ∈ ( bday 𝐴 ) ↔ ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
66 60 65 sylib ( 𝜑 → ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
67 oldbdayim ( 𝑅 ∈ ( O ‘ ( bday 𝐴 ) ) → ( bday 𝑅 ) ∈ ( bday 𝐴 ) )
68 14 67 syl ( 𝜑 → ( bday 𝑅 ) ∈ ( bday 𝐴 ) )
69 oldbdayim ( 𝑆 ∈ ( O ‘ ( bday 𝐵 ) ) → ( bday 𝑆 ) ∈ ( bday 𝐵 ) )
70 17 69 syl ( 𝜑 → ( bday 𝑆 ) ∈ ( bday 𝐵 ) )
71 naddel12 ( ( ( bday 𝐴 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( ( bday 𝑅 ) ∈ ( bday 𝐴 ) ∧ ( bday 𝑆 ) ∈ ( bday 𝐵 ) ) → ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
72 62 63 71 mp2an ( ( ( bday 𝑅 ) ∈ ( bday 𝐴 ) ∧ ( bday 𝑆 ) ∈ ( bday 𝐵 ) ) → ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
73 68 70 72 syl2anc ( 𝜑 → ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
74 66 73 jca ( 𝜑 → ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
75 naddel12 ( ( ( bday 𝐴 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( ( bday 𝑇 ) ∈ ( bday 𝐴 ) ∧ ( bday 𝑆 ) ∈ ( bday 𝐵 ) ) → ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
76 62 63 75 mp2an ( ( ( bday 𝑇 ) ∈ ( bday 𝐴 ) ∧ ( bday 𝑆 ) ∈ ( bday 𝐵 ) ) → ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
77 60 70 76 syl2anc ( 𝜑 → ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
78 bdayelon ( bday 𝑅 ) ∈ On
79 naddel1 ( ( ( bday 𝑅 ) ∈ On ∧ ( bday 𝐴 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( bday 𝑅 ) ∈ ( bday 𝐴 ) ↔ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
80 78 62 63 79 mp3an ( ( bday 𝑅 ) ∈ ( bday 𝐴 ) ↔ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
81 68 80 sylib ( 𝜑 → ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
82 77 81 jca ( 𝜑 → ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
83 naddcl ( ( ( bday 𝑇 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∈ On )
84 61 63 83 mp2an ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∈ On
85 bdayelon ( bday 𝑆 ) ∈ On
86 naddcl ( ( ( bday 𝑅 ) ∈ On ∧ ( bday 𝑆 ) ∈ On ) → ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ On )
87 78 85 86 mp2an ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ On
88 84 87 onun2i ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ On
89 naddcl ( ( ( bday 𝑇 ) ∈ On ∧ ( bday 𝑆 ) ∈ On ) → ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∈ On )
90 61 85 89 mp2an ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∈ On
91 naddcl ( ( ( bday 𝑅 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ On )
92 78 63 91 mp2an ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ On
93 90 92 onun2i ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ On
94 naddcl ( ( ( bday 𝐴 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On )
95 62 63 94 mp2an ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On
96 onunel ( ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ On ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
97 88 93 95 96 mp3an ( ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
98 onunel ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∈ On ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
99 84 87 95 98 mp3an ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
100 onunel ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∈ On ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
101 90 92 95 100 mp3an ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
102 99 101 anbi12i ( ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ↔ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
103 97 102 bitri ( ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
104 74 82 103 sylanbrc ( 𝜑 → ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
105 elun1 ( ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) → ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
106 104 105 syl ( 𝜑 → ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
107 58 106 eqeltrid ( 𝜑 → ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
108 1 45 45 47 49 3 9 107 mulsproplem1 ( 𝜑 → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝑇 <s 𝑅𝐵 <s 𝑆 ) → ( ( 𝑇 ·s 𝑆 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ) ) )
109 108 simprd ( 𝜑 → ( ( 𝑇 <s 𝑅𝐵 <s 𝑆 ) → ( ( 𝑇 ·s 𝑆 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ) )
110 38 43 109 mp2and ( 𝜑 → ( ( 𝑇 ·s 𝑆 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) )
111 27 25 20 15 sltsubsub2bd ( 𝜑 → ( ( ( 𝑇 ·s 𝑆 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ↔ ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑆 ) ) ) )
112 15 20 subscld ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No )
113 25 27 subscld ( 𝜑 → ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑆 ) ) ∈ No )
114 112 113 18 sltadd1d ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑆 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) )
115 111 114 bitrd ( 𝜑 → ( ( ( 𝑇 ·s 𝑆 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) )
116 110 115 mpbid ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) )
117 15 18 20 addsubsd ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) = ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) )
118 25 18 27 addsubsd ( 𝜑 → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑇 ·s 𝑆 ) ) = ( ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) )
119 116 117 118 3brtr4d ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑇 ·s 𝑆 ) ) )
120 119 adantr ( ( 𝜑𝑆 <s 𝑈 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑇 ·s 𝑆 ) ) )
121 ssltleft ( 𝐴 No → ( L ‘ 𝐴 ) <<s { 𝐴 } )
122 2 121 syl ( 𝜑 → ( L ‘ 𝐴 ) <<s { 𝐴 } )
123 snidg ( 𝐴 No 𝐴 ∈ { 𝐴 } )
124 2 123 syl ( 𝜑𝐴 ∈ { 𝐴 } )
125 122 6 124 ssltsepcd ( 𝜑𝑇 <s 𝐴 )
126 55 uneq1i ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ) ) = ( ∅ ∪ ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ) )
127 0un ( ∅ ∪ ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ) ) = ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) )
128 126 127 eqtri ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ) ) = ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) )
129 oldbdayim ( 𝑈 ∈ ( O ‘ ( bday 𝐵 ) ) → ( bday 𝑈 ) ∈ ( bday 𝐵 ) )
130 30 129 syl ( 𝜑 → ( bday 𝑈 ) ∈ ( bday 𝐵 ) )
131 bdayelon ( bday 𝑈 ) ∈ On
132 naddel2 ( ( ( bday 𝑈 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ∧ ( bday 𝐴 ) ∈ On ) → ( ( bday 𝑈 ) ∈ ( bday 𝐵 ) ↔ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
133 131 63 62 132 mp3an ( ( bday 𝑈 ) ∈ ( bday 𝐵 ) ↔ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
134 130 133 sylib ( 𝜑 → ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
135 77 134 jca ( 𝜑 → ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
136 naddel12 ( ( ( bday 𝐴 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( ( bday 𝑇 ) ∈ ( bday 𝐴 ) ∧ ( bday 𝑈 ) ∈ ( bday 𝐵 ) ) → ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
137 62 63 136 mp2an ( ( ( bday 𝑇 ) ∈ ( bday 𝐴 ) ∧ ( bday 𝑈 ) ∈ ( bday 𝐵 ) ) → ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
138 60 130 137 syl2anc ( 𝜑 → ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
139 naddel2 ( ( ( bday 𝑆 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ∧ ( bday 𝐴 ) ∈ On ) → ( ( bday 𝑆 ) ∈ ( bday 𝐵 ) ↔ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
140 85 63 62 139 mp3an ( ( bday 𝑆 ) ∈ ( bday 𝐵 ) ↔ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
141 70 140 sylib ( 𝜑 → ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
142 138 141 jca ( 𝜑 → ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
143 naddcl ( ( ( bday 𝐴 ) ∈ On ∧ ( bday 𝑈 ) ∈ On ) → ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∈ On )
144 62 131 143 mp2an ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∈ On
145 90 144 onun2i ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∈ On
146 naddcl ( ( ( bday 𝑇 ) ∈ On ∧ ( bday 𝑈 ) ∈ On ) → ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∈ On )
147 61 131 146 mp2an ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∈ On
148 naddcl ( ( ( bday 𝐴 ) ∈ On ∧ ( bday 𝑆 ) ∈ On ) → ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ On )
149 62 85 148 mp2an ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ On
150 147 149 onun2i ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ∈ On
151 onunel ( ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∈ On ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
152 145 150 95 151 mp3an ( ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
153 onunel ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
154 90 144 95 153 mp3an ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
155 onunel ( ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
156 147 149 95 155 mp3an ( ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
157 154 156 anbi12i ( ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ↔ ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
158 152 157 bitri ( ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
159 135 142 158 sylanbrc ( 𝜑 → ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
160 elun1 ( ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) → ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
161 159 160 syl ( 𝜑 → ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
162 128 161 eqeltrid ( 𝜑 → ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝑇 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
163 1 45 45 47 2 9 10 162 mulsproplem1 ( 𝜑 → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝑇 <s 𝐴𝑆 <s 𝑈 ) → ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝐴 ·s 𝑆 ) ) ) ) )
164 163 simprd ( 𝜑 → ( ( 𝑇 <s 𝐴𝑆 <s 𝑈 ) → ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝐴 ·s 𝑆 ) ) ) )
165 125 164 mpand ( 𝜑 → ( 𝑆 <s 𝑈 → ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝐴 ·s 𝑆 ) ) ) )
166 165 imp ( ( 𝜑𝑆 <s 𝑈 ) → ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝐴 ·s 𝑆 ) ) )
167 33 31 27 18 sltsubsub3bd ( 𝜑 → ( ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝐴 ·s 𝑆 ) ) ↔ ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ) )
168 18 27 subscld ( 𝜑 → ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) ∈ No )
169 31 33 subscld ( 𝜑 → ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ∈ No )
170 168 169 25 sltadd2d ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ↔ ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) ) <s ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ) ) )
171 167 170 bitrd ( 𝜑 → ( ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝐴 ·s 𝑆 ) ) ↔ ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) ) <s ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ) ) )
172 171 adantr ( ( 𝜑𝑆 <s 𝑈 ) → ( ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝐴 ·s 𝑆 ) ) ↔ ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) ) <s ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ) ) )
173 166 172 mpbid ( ( 𝜑𝑆 <s 𝑈 ) → ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) ) <s ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ) )
174 25 18 27 addsubsassd ( 𝜑 → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑇 ·s 𝑆 ) ) = ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) ) )
175 174 adantr ( ( 𝜑𝑆 <s 𝑈 ) → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑇 ·s 𝑆 ) ) = ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑇 ·s 𝑆 ) ) ) )
176 25 31 33 addsubsassd ( 𝜑 → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) = ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ) )
177 176 adantr ( ( 𝜑𝑆 <s 𝑈 ) → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) = ( ( 𝑇 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑇 ·s 𝑈 ) ) ) )
178 173 175 177 3brtr4d ( ( 𝜑𝑆 <s 𝑈 ) → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑇 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) )
179 22 29 35 120 178 slttrd ( ( 𝜑𝑆 <s 𝑈 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) )
180 179 ex ( 𝜑 → ( 𝑆 <s 𝑈 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ) )
181 40 42 7 ssltsepcd ( 𝜑𝐵 <s 𝑈 )
182 55 uneq1i ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ) = ( ∅ ∪ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) )
183 0un ( ∅ ∪ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ) = ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) )
184 182 183 eqtri ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ) = ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) )
185 naddel12 ( ( ( bday 𝐴 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( ( bday 𝑅 ) ∈ ( bday 𝐴 ) ∧ ( bday 𝑈 ) ∈ ( bday 𝐵 ) ) → ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
186 62 63 185 mp2an ( ( ( bday 𝑅 ) ∈ ( bday 𝐴 ) ∧ ( bday 𝑈 ) ∈ ( bday 𝐵 ) ) → ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
187 68 130 186 syl2anc ( 𝜑 → ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
188 66 187 jca ( 𝜑 → ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
189 138 81 jca ( 𝜑 → ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
190 naddcl ( ( ( bday 𝑅 ) ∈ On ∧ ( bday 𝑈 ) ∈ On ) → ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ∈ On )
191 78 131 190 mp2an ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ∈ On
192 84 191 onun2i ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∈ On
193 147 92 onun2i ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ On
194 onunel ( ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∈ On ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
195 192 193 95 194 mp3an ( ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
196 onunel ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∈ On ∧ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
197 84 191 95 196 mp3an ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
198 onunel ( ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∈ On ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
199 147 92 95 198 mp3an ( ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
200 197 199 anbi12i ( ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ↔ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
201 195 200 bitri ( ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ∧ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
202 188 189 201 sylanbrc ( 𝜑 → ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
203 elun1 ( ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) → ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
204 202 203 syl ( 𝜑 → ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
205 184 204 eqeltrid ( 𝜑 → ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝑇 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑇 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
206 1 45 45 47 49 3 10 205 mulsproplem1 ( 𝜑 → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝑇 <s 𝑅𝐵 <s 𝑈 ) → ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑈 ) -s ( 𝑅 ·s 𝐵 ) ) ) ) )
207 206 simprd ( 𝜑 → ( ( 𝑇 <s 𝑅𝐵 <s 𝑈 ) → ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑈 ) -s ( 𝑅 ·s 𝐵 ) ) ) )
208 38 181 207 mp2and ( 𝜑 → ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑈 ) -s ( 𝑅 ·s 𝐵 ) ) )
209 1 14 30 mulsproplem4 ( 𝜑 → ( 𝑅 ·s 𝑈 ) ∈ No )
210 33 25 209 15 sltsubsub2bd ( 𝜑 → ( ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑈 ) -s ( 𝑅 ·s 𝐵 ) ) ↔ ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑈 ) ) <s ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑈 ) ) ) )
211 15 209 subscld ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑈 ) ) ∈ No )
212 25 33 subscld ( 𝜑 → ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑈 ) ) ∈ No )
213 211 212 31 sltadd1d ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑈 ) ) <s ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑈 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑈 ) ) +s ( 𝐴 ·s 𝑈 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑈 ) ) +s ( 𝐴 ·s 𝑈 ) ) ) )
214 210 213 bitrd ( 𝜑 → ( ( ( 𝑇 ·s 𝑈 ) -s ( 𝑇 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑈 ) -s ( 𝑅 ·s 𝐵 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑈 ) ) +s ( 𝐴 ·s 𝑈 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑈 ) ) +s ( 𝐴 ·s 𝑈 ) ) ) )
215 208 214 mpbid ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑈 ) ) +s ( 𝐴 ·s 𝑈 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑈 ) ) +s ( 𝐴 ·s 𝑈 ) ) )
216 15 31 209 addsubsd ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) = ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑈 ) ) +s ( 𝐴 ·s 𝑈 ) ) )
217 25 31 33 addsubsd ( 𝜑 → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) = ( ( ( 𝑇 ·s 𝐵 ) -s ( 𝑇 ·s 𝑈 ) ) +s ( 𝐴 ·s 𝑈 ) ) )
218 215 216 217 3brtr4d ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) )
219 oveq2 ( 𝑆 = 𝑈 → ( 𝐴 ·s 𝑆 ) = ( 𝐴 ·s 𝑈 ) )
220 219 oveq2d ( 𝑆 = 𝑈 → ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) = ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) )
221 oveq2 ( 𝑆 = 𝑈 → ( 𝑅 ·s 𝑆 ) = ( 𝑅 ·s 𝑈 ) )
222 220 221 oveq12d ( 𝑆 = 𝑈 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) = ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) )
223 222 breq1d ( 𝑆 = 𝑈 → ( ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ) )
224 218 223 syl5ibrcom ( 𝜑 → ( 𝑆 = 𝑈 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ) )
225 21 adantr ( ( 𝜑𝑈 <s 𝑆 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No )
226 15 31 addscld ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) ∈ No )
227 226 209 subscld ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) ∈ No )
228 227 adantr ( ( 𝜑𝑈 <s 𝑆 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) ∈ No )
229 34 adantr ( ( 𝜑𝑈 <s 𝑆 ) → ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ∈ No )
230 ssltright ( 𝐴 No → { 𝐴 } <<s ( R ‘ 𝐴 ) )
231 2 230 syl ( 𝜑 → { 𝐴 } <<s ( R ‘ 𝐴 ) )
232 231 124 4 ssltsepcd ( 𝜑𝐴 <s 𝑅 )
233 55 uneq1i ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ) ) = ( ∅ ∪ ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ) )
234 0un ( ∅ ∪ ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ) ) = ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) )
235 233 234 eqtri ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ) ) = ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) )
236 134 73 jca ( 𝜑 → ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
237 141 187 jca ( 𝜑 → ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
238 144 87 onun2i ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ On
239 149 191 onun2i ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∈ On
240 onunel ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ On ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
241 238 239 95 240 mp3an ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
242 onunel ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∈ On ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
243 144 87 95 242 mp3an ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
244 onunel ( ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ On ∧ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
245 149 191 95 244 mp3an ( ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
246 243 245 anbi12i ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ↔ ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
247 241 246 bitri ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
248 236 237 247 sylanbrc ( 𝜑 → ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
249 elun1 ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) → ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
250 248 249 syl ( 𝜑 → ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
251 235 250 eqeltrid ( 𝜑 → ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝐴 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑈 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
252 1 45 45 2 49 10 9 251 mulsproplem1 ( 𝜑 → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝐴 <s 𝑅𝑈 <s 𝑆 ) → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑈 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑈 ) ) ) ) )
253 252 simprd ( 𝜑 → ( ( 𝐴 <s 𝑅𝑈 <s 𝑆 ) → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑈 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑈 ) ) ) )
254 232 253 mpand ( 𝜑 → ( 𝑈 <s 𝑆 → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑈 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑈 ) ) ) )
255 254 imp ( ( 𝜑𝑈 <s 𝑆 ) → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑈 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑈 ) ) )
256 18 20 31 209 sltsubsubbd ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑈 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑈 ) ) ↔ ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ) )
257 18 20 subscld ( 𝜑 → ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No )
258 31 209 subscld ( 𝜑 → ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ∈ No )
259 257 258 15 sltadd2d ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ↔ ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) <s ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ) ) )
260 256 259 bitrd ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑈 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑈 ) ) ↔ ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) <s ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ) ) )
261 260 adantr ( ( 𝜑𝑈 <s 𝑆 ) → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑈 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑈 ) ) ↔ ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) <s ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ) ) )
262 255 261 mpbid ( ( 𝜑𝑈 <s 𝑆 ) → ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) <s ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ) )
263 15 18 20 addsubsassd ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) = ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) )
264 263 adantr ( ( 𝜑𝑈 <s 𝑆 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) = ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) )
265 15 31 209 addsubsassd ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) = ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ) )
266 265 adantr ( ( 𝜑𝑈 <s 𝑆 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) = ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑈 ) -s ( 𝑅 ·s 𝑈 ) ) ) )
267 262 264 266 3brtr4d ( ( 𝜑𝑈 <s 𝑆 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) )
268 218 adantr ( ( 𝜑𝑈 <s 𝑆 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑅 ·s 𝑈 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) )
269 225 228 229 267 268 slttrd ( ( 𝜑𝑈 <s 𝑆 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) )
270 269 ex ( 𝜑 → ( 𝑈 <s 𝑆 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ) )
271 180 224 270 3jaod ( 𝜑 → ( ( 𝑆 <s 𝑈𝑆 = 𝑈𝑈 <s 𝑆 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) ) )
272 12 271 mpd ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑇 ·s 𝐵 ) +s ( 𝐴 ·s 𝑈 ) ) -s ( 𝑇 ·s 𝑈 ) ) )