Metamath Proof Explorer


Theorem mulsproplem8

Description: Lemma for surreal multiplication. Show one of the inequalities involved in surreal multiplication's cuts. (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Hypotheses mulsproplem.1 ( 𝜑 → ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
mulsproplem8.1 ( 𝜑𝐴 No )
mulsproplem8.2 ( 𝜑𝐵 No )
mulsproplem8.3 ( 𝜑𝑅 ∈ ( R ‘ 𝐴 ) )
mulsproplem8.4 ( 𝜑𝑆 ∈ ( R ‘ 𝐵 ) )
mulsproplem8.5 ( 𝜑𝑉 ∈ ( R ‘ 𝐴 ) )
mulsproplem8.6 ( 𝜑𝑊 ∈ ( L ‘ 𝐵 ) )
Assertion mulsproplem8 ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 mulsproplem.1 ( 𝜑 → ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
2 mulsproplem8.1 ( 𝜑𝐴 No )
3 mulsproplem8.2 ( 𝜑𝐵 No )
4 mulsproplem8.3 ( 𝜑𝑅 ∈ ( R ‘ 𝐴 ) )
5 mulsproplem8.4 ( 𝜑𝑆 ∈ ( R ‘ 𝐵 ) )
6 mulsproplem8.5 ( 𝜑𝑉 ∈ ( R ‘ 𝐴 ) )
7 mulsproplem8.6 ( 𝜑𝑊 ∈ ( L ‘ 𝐵 ) )
8 rightssno ( R ‘ 𝐴 ) ⊆ No
9 8 4 sselid ( 𝜑𝑅 No )
10 8 6 sselid ( 𝜑𝑉 No )
11 sltlin ( ( 𝑅 No 𝑉 No ) → ( 𝑅 <s 𝑉𝑅 = 𝑉𝑉 <s 𝑅 ) )
12 9 10 11 syl2anc ( 𝜑 → ( 𝑅 <s 𝑉𝑅 = 𝑉𝑉 <s 𝑅 ) )
13 rightssold ( R ‘ 𝐴 ) ⊆ ( O ‘ ( bday 𝐴 ) )
14 13 4 sselid ( 𝜑𝑅 ∈ ( O ‘ ( bday 𝐴 ) ) )
15 1 14 3 mulsproplem2 ( 𝜑 → ( 𝑅 ·s 𝐵 ) ∈ No )
16 rightssold ( R ‘ 𝐵 ) ⊆ ( O ‘ ( bday 𝐵 ) )
17 16 5 sselid ( 𝜑𝑆 ∈ ( O ‘ ( bday 𝐵 ) ) )
18 1 2 17 mulsproplem3 ( 𝜑 → ( 𝐴 ·s 𝑆 ) ∈ No )
19 15 18 addscld ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) ∈ No )
20 1 14 17 mulsproplem4 ( 𝜑 → ( 𝑅 ·s 𝑆 ) ∈ No )
21 19 20 subscld ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No )
22 21 adantr ( ( 𝜑𝑅 <s 𝑉 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No )
23 leftssold ( L ‘ 𝐵 ) ⊆ ( O ‘ ( bday 𝐵 ) )
24 23 7 sselid ( 𝜑𝑊 ∈ ( O ‘ ( bday 𝐵 ) ) )
25 1 2 24 mulsproplem3 ( 𝜑 → ( 𝐴 ·s 𝑊 ) ∈ No )
26 15 25 addscld ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) ∈ No )
27 1 14 24 mulsproplem4 ( 𝜑 → ( 𝑅 ·s 𝑊 ) ∈ No )
28 26 27 subscld ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑅 ·s 𝑊 ) ) ∈ No )
29 28 adantr ( ( 𝜑𝑅 <s 𝑉 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑅 ·s 𝑊 ) ) ∈ No )
30 13 6 sselid ( 𝜑𝑉 ∈ ( O ‘ ( bday 𝐴 ) ) )
31 1 30 3 mulsproplem2 ( 𝜑 → ( 𝑉 ·s 𝐵 ) ∈ No )
32 31 25 addscld ( 𝜑 → ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) ∈ No )
33 1 30 24 mulsproplem4 ( 𝜑 → ( 𝑉 ·s 𝑊 ) ∈ No )
34 32 33 subscld ( 𝜑 → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ∈ No )
35 34 adantr ( ( 𝜑𝑅 <s 𝑉 ) → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ∈ No )
36 ssltright ( 𝐴 No → { 𝐴 } <<s ( R ‘ 𝐴 ) )
37 2 36 syl ( 𝜑 → { 𝐴 } <<s ( R ‘ 𝐴 ) )
38 snidg ( 𝐴 No 𝐴 ∈ { 𝐴 } )
39 2 38 syl ( 𝜑𝐴 ∈ { 𝐴 } )
40 37 39 4 ssltsepcd ( 𝜑𝐴 <s 𝑅 )
41 lltropt ( L ‘ 𝐵 ) <<s ( R ‘ 𝐵 )
42 41 a1i ( 𝜑 → ( L ‘ 𝐵 ) <<s ( R ‘ 𝐵 ) )
43 42 7 5 ssltsepcd ( 𝜑𝑊 <s 𝑆 )
44 0sno 0s No
45 44 a1i ( 𝜑 → 0s No )
46 leftssno ( L ‘ 𝐵 ) ⊆ No
47 46 7 sselid ( 𝜑𝑊 No )
48 rightssno ( R ‘ 𝐵 ) ⊆ No
49 48 5 sselid ( 𝜑𝑆 No )
50 bday0s ( bday ‘ 0s ) = ∅
51 50 50 oveq12i ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) = ( ∅ +no ∅ )
52 0elon ∅ ∈ On
53 naddrid ( ∅ ∈ On → ( ∅ +no ∅ ) = ∅ )
54 52 53 ax-mp ( ∅ +no ∅ ) = ∅
55 51 54 eqtri ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) = ∅
56 55 uneq1i ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ) ) = ( ∅ ∪ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ) )
57 0un ( ∅ ∪ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ) ) = ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) )
58 56 57 eqtri ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ) ) = ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) )
59 oldbdayim ( 𝑊 ∈ ( O ‘ ( bday 𝐵 ) ) → ( bday 𝑊 ) ∈ ( bday 𝐵 ) )
60 24 59 syl ( 𝜑 → ( bday 𝑊 ) ∈ ( bday 𝐵 ) )
61 bdayelon ( bday 𝑊 ) ∈ On
62 bdayelon ( bday 𝐵 ) ∈ On
63 bdayelon ( bday 𝐴 ) ∈ On
64 naddel2 ( ( ( bday 𝑊 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ∧ ( bday 𝐴 ) ∈ On ) → ( ( bday 𝑊 ) ∈ ( bday 𝐵 ) ↔ ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
65 61 62 63 64 mp3an ( ( bday 𝑊 ) ∈ ( bday 𝐵 ) ↔ ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
66 60 65 sylib ( 𝜑 → ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
67 oldbdayim ( 𝑅 ∈ ( O ‘ ( bday 𝐴 ) ) → ( bday 𝑅 ) ∈ ( bday 𝐴 ) )
68 14 67 syl ( 𝜑 → ( bday 𝑅 ) ∈ ( bday 𝐴 ) )
69 oldbdayim ( 𝑆 ∈ ( O ‘ ( bday 𝐵 ) ) → ( bday 𝑆 ) ∈ ( bday 𝐵 ) )
70 17 69 syl ( 𝜑 → ( bday 𝑆 ) ∈ ( bday 𝐵 ) )
71 naddel12 ( ( ( bday 𝐴 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( ( bday 𝑅 ) ∈ ( bday 𝐴 ) ∧ ( bday 𝑆 ) ∈ ( bday 𝐵 ) ) → ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
72 63 62 71 mp2an ( ( ( bday 𝑅 ) ∈ ( bday 𝐴 ) ∧ ( bday 𝑆 ) ∈ ( bday 𝐵 ) ) → ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
73 68 70 72 syl2anc ( 𝜑 → ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
74 66 73 jca ( 𝜑 → ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
75 bdayelon ( bday 𝑆 ) ∈ On
76 naddel2 ( ( ( bday 𝑆 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ∧ ( bday 𝐴 ) ∈ On ) → ( ( bday 𝑆 ) ∈ ( bday 𝐵 ) ↔ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
77 75 62 63 76 mp3an ( ( bday 𝑆 ) ∈ ( bday 𝐵 ) ↔ ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
78 70 77 sylib ( 𝜑 → ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
79 naddel12 ( ( ( bday 𝐴 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( ( bday 𝑅 ) ∈ ( bday 𝐴 ) ∧ ( bday 𝑊 ) ∈ ( bday 𝐵 ) ) → ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
80 63 62 79 mp2an ( ( ( bday 𝑅 ) ∈ ( bday 𝐴 ) ∧ ( bday 𝑊 ) ∈ ( bday 𝐵 ) ) → ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
81 68 60 80 syl2anc ( 𝜑 → ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
82 78 81 jca ( 𝜑 → ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
83 naddcl ( ( ( bday 𝐴 ) ∈ On ∧ ( bday 𝑊 ) ∈ On ) → ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∈ On )
84 63 61 83 mp2an ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∈ On
85 bdayelon ( bday 𝑅 ) ∈ On
86 naddcl ( ( ( bday 𝑅 ) ∈ On ∧ ( bday 𝑆 ) ∈ On ) → ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ On )
87 85 75 86 mp2an ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ On
88 84 87 onun2i ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ On
89 naddcl ( ( ( bday 𝐴 ) ∈ On ∧ ( bday 𝑆 ) ∈ On ) → ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ On )
90 63 75 89 mp2an ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ On
91 naddcl ( ( ( bday 𝑅 ) ∈ On ∧ ( bday 𝑊 ) ∈ On ) → ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∈ On )
92 85 61 91 mp2an ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∈ On
93 90 92 onun2i ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ∈ On
94 naddcl ( ( ( bday 𝐴 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On )
95 63 62 94 mp2an ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On
96 onunel ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ On ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
97 88 93 95 96 mp3an ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
98 onunel ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∈ On ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
99 84 87 95 98 mp3an ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
100 onunel ( ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ On ∧ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
101 90 92 95 100 mp3an ( ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
102 99 101 anbi12i ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ↔ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
103 97 102 bitri ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
104 74 82 103 sylanbrc ( 𝜑 → ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
105 elun1 ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) → ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
106 104 105 syl ( 𝜑 → ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
107 58 106 eqeltrid ( 𝜑 → ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
108 1 45 45 2 9 47 49 107 mulsproplem1 ( 𝜑 → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝐴 <s 𝑅𝑊 <s 𝑆 ) → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑊 ) ) ) ) )
109 108 simprd ( 𝜑 → ( ( 𝐴 <s 𝑅𝑊 <s 𝑆 ) → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑊 ) ) ) )
110 40 43 109 mp2and ( 𝜑 → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑊 ) ) )
111 18 20 25 27 sltsubsubbd ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑊 ) ) ↔ ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑅 ·s 𝑊 ) ) ) )
112 18 20 subscld ( 𝜑 → ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No )
113 25 27 subscld ( 𝜑 → ( ( 𝐴 ·s 𝑊 ) -s ( 𝑅 ·s 𝑊 ) ) ∈ No )
114 112 113 15 sltadd2d ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑅 ·s 𝑊 ) ) ↔ ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) <s ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑅 ·s 𝑊 ) ) ) ) )
115 111 114 bitrd ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝑊 ) ) ↔ ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) <s ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑅 ·s 𝑊 ) ) ) ) )
116 110 115 mpbid ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) <s ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑅 ·s 𝑊 ) ) ) )
117 15 18 20 addsubsassd ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) = ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑅 ·s 𝑆 ) ) ) )
118 15 25 27 addsubsassd ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑅 ·s 𝑊 ) ) = ( ( 𝑅 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑅 ·s 𝑊 ) ) ) )
119 116 117 118 3brtr4d ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑅 ·s 𝑊 ) ) )
120 119 adantr ( ( 𝜑𝑅 <s 𝑉 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑅 ·s 𝑊 ) ) )
121 ssltleft ( 𝐵 No → ( L ‘ 𝐵 ) <<s { 𝐵 } )
122 3 121 syl ( 𝜑 → ( L ‘ 𝐵 ) <<s { 𝐵 } )
123 snidg ( 𝐵 No 𝐵 ∈ { 𝐵 } )
124 3 123 syl ( 𝜑𝐵 ∈ { 𝐵 } )
125 122 7 124 ssltsepcd ( 𝜑𝑊 <s 𝐵 )
126 55 uneq1i ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∪ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ) = ( ∅ ∪ ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∪ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) )
127 0un ( ∅ ∪ ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∪ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ) = ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∪ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) )
128 126 127 eqtri ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∪ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ) = ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∪ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) )
129 oldbdayim ( 𝑉 ∈ ( O ‘ ( bday 𝐴 ) ) → ( bday 𝑉 ) ∈ ( bday 𝐴 ) )
130 30 129 syl ( 𝜑 → ( bday 𝑉 ) ∈ ( bday 𝐴 ) )
131 bdayelon ( bday 𝑉 ) ∈ On
132 naddel1 ( ( ( bday 𝑉 ) ∈ On ∧ ( bday 𝐴 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( bday 𝑉 ) ∈ ( bday 𝐴 ) ↔ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
133 131 63 62 132 mp3an ( ( bday 𝑉 ) ∈ ( bday 𝐴 ) ↔ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
134 130 133 sylib ( 𝜑 → ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
135 81 134 jca ( 𝜑 → ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
136 naddel1 ( ( ( bday 𝑅 ) ∈ On ∧ ( bday 𝐴 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( bday 𝑅 ) ∈ ( bday 𝐴 ) ↔ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
137 85 63 62 136 mp3an ( ( bday 𝑅 ) ∈ ( bday 𝐴 ) ↔ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
138 68 137 sylib ( 𝜑 → ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
139 naddel12 ( ( ( bday 𝐴 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( ( bday 𝑉 ) ∈ ( bday 𝐴 ) ∧ ( bday 𝑊 ) ∈ ( bday 𝐵 ) ) → ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
140 63 62 139 mp2an ( ( ( bday 𝑉 ) ∈ ( bday 𝐴 ) ∧ ( bday 𝑊 ) ∈ ( bday 𝐵 ) ) → ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
141 130 60 140 syl2anc ( 𝜑 → ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
142 138 141 jca ( 𝜑 → ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
143 naddcl ( ( ( bday 𝑉 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∈ On )
144 131 62 143 mp2an ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∈ On
145 92 144 onun2i ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∈ On
146 naddcl ( ( ( bday 𝑅 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ On )
147 85 62 146 mp2an ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ On
148 naddcl ( ( ( bday 𝑉 ) ∈ On ∧ ( bday 𝑊 ) ∈ On ) → ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ∈ On )
149 131 61 148 mp2an ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ∈ On
150 147 149 onun2i ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ∈ On
151 onunel ( ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∈ On ∧ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∪ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
152 145 150 95 151 mp3an ( ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∪ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
153 onunel ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∈ On ∧ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
154 92 144 95 153 mp3an ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
155 onunel ( ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ On ∧ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
156 147 149 95 155 mp3an ( ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
157 154 156 anbi12i ( ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ↔ ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ∧ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
158 152 157 bitri ( ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∪ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ∧ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
159 135 142 158 sylanbrc ( 𝜑 → ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∪ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
160 elun1 ( ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∪ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) → ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∪ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
161 159 160 syl ( 𝜑 → ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∪ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
162 128 161 eqeltrid ( 𝜑 → ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝑅 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ) ∪ ( ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
163 1 45 45 9 10 47 3 162 mulsproplem1 ( 𝜑 → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝑅 <s 𝑉𝑊 <s 𝐵 ) → ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) ) ) )
164 163 simprd ( 𝜑 → ( ( 𝑅 <s 𝑉𝑊 <s 𝐵 ) → ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) ) )
165 125 164 mpan2d ( 𝜑 → ( 𝑅 <s 𝑉 → ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) ) )
166 165 imp ( ( 𝜑𝑅 <s 𝑉 ) → ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) )
167 15 27 subscld ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) ∈ No )
168 31 33 subscld ( 𝜑 → ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) ∈ No )
169 167 168 25 sltadd1d ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) ) )
170 169 adantr ( ( 𝜑𝑅 <s 𝑉 ) → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) ) )
171 166 170 mpbid ( ( 𝜑𝑅 <s 𝑉 ) → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) )
172 15 25 27 addsubsd ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑅 ·s 𝑊 ) ) = ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) )
173 172 adantr ( ( 𝜑𝑅 <s 𝑉 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑅 ·s 𝑊 ) ) = ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) )
174 31 25 33 addsubsd ( 𝜑 → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) = ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) )
175 174 adantr ( ( 𝜑𝑅 <s 𝑉 ) → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) = ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑊 ) ) +s ( 𝐴 ·s 𝑊 ) ) )
176 171 173 175 3brtr4d ( ( 𝜑𝑅 <s 𝑉 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑅 ·s 𝑊 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) )
177 22 29 35 120 176 slttrd ( ( 𝜑𝑅 <s 𝑉 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) )
178 177 ex ( 𝜑 → ( 𝑅 <s 𝑉 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ) )
179 37 39 6 ssltsepcd ( 𝜑𝐴 <s 𝑉 )
180 55 uneq1i ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ) = ( ∅ ∪ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) )
181 0un ( ∅ ∪ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ) = ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) )
182 180 181 eqtri ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ) = ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) )
183 naddel12 ( ( ( bday 𝐴 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( ( bday 𝑉 ) ∈ ( bday 𝐴 ) ∧ ( bday 𝑆 ) ∈ ( bday 𝐵 ) ) → ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
184 63 62 183 mp2an ( ( ( bday 𝑉 ) ∈ ( bday 𝐴 ) ∧ ( bday 𝑆 ) ∈ ( bday 𝐵 ) ) → ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
185 130 70 184 syl2anc ( 𝜑 → ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
186 66 185 jca ( 𝜑 → ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
187 78 141 jca ( 𝜑 → ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
188 naddcl ( ( ( bday 𝑉 ) ∈ On ∧ ( bday 𝑆 ) ∈ On ) → ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∈ On )
189 131 75 188 mp2an ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∈ On
190 84 189 onun2i ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∈ On
191 90 149 onun2i ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ∈ On
192 onunel ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∈ On ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
193 190 191 95 192 mp3an ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
194 onunel ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∈ On ∧ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
195 84 189 95 194 mp3an ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
196 onunel ( ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ On ∧ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
197 90 149 95 196 mp3an ( ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
198 195 197 anbi12i ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ↔ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
199 193 198 bitri ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ∧ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
200 186 187 199 sylanbrc ( 𝜑 → ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
201 elun1 ( ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) → ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
202 200 201 syl ( 𝜑 → ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
203 182 202 eqeltrid ( 𝜑 → ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝐴 ) +no ( bday 𝑊 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝐴 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑉 ) +no ( bday 𝑊 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
204 1 45 45 2 10 47 49 203 mulsproplem1 ( 𝜑 → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝐴 <s 𝑉𝑊 <s 𝑆 ) → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝑊 ) ) ) ) )
205 204 simprd ( 𝜑 → ( ( 𝐴 <s 𝑉𝑊 <s 𝑆 ) → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝑊 ) ) ) )
206 179 43 205 mp2and ( 𝜑 → ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝑊 ) ) )
207 1 30 17 mulsproplem4 ( 𝜑 → ( 𝑉 ·s 𝑆 ) ∈ No )
208 18 207 25 33 sltsubsubbd ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝑊 ) ) ↔ ( ( 𝐴 ·s 𝑆 ) -s ( 𝑉 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑉 ·s 𝑊 ) ) ) )
209 18 207 subscld ( 𝜑 → ( ( 𝐴 ·s 𝑆 ) -s ( 𝑉 ·s 𝑆 ) ) ∈ No )
210 25 33 subscld ( 𝜑 → ( ( 𝐴 ·s 𝑊 ) -s ( 𝑉 ·s 𝑊 ) ) ∈ No )
211 209 210 31 sltadd2d ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝑉 ·s 𝑆 ) ) <s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑉 ·s 𝑊 ) ) ↔ ( ( 𝑉 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑉 ·s 𝑆 ) ) ) <s ( ( 𝑉 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑉 ·s 𝑊 ) ) ) ) )
212 208 211 bitrd ( 𝜑 → ( ( ( 𝐴 ·s 𝑆 ) -s ( 𝐴 ·s 𝑊 ) ) <s ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝑊 ) ) ↔ ( ( 𝑉 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑉 ·s 𝑆 ) ) ) <s ( ( 𝑉 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑉 ·s 𝑊 ) ) ) ) )
213 206 212 mpbid ( 𝜑 → ( ( 𝑉 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑉 ·s 𝑆 ) ) ) <s ( ( 𝑉 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑉 ·s 𝑊 ) ) ) )
214 31 18 207 addsubsassd ( 𝜑 → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) = ( ( 𝑉 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑆 ) -s ( 𝑉 ·s 𝑆 ) ) ) )
215 31 25 33 addsubsassd ( 𝜑 → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) = ( ( 𝑉 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑊 ) -s ( 𝑉 ·s 𝑊 ) ) ) )
216 213 214 215 3brtr4d ( 𝜑 → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) )
217 oveq1 ( 𝑅 = 𝑉 → ( 𝑅 ·s 𝐵 ) = ( 𝑉 ·s 𝐵 ) )
218 217 oveq1d ( 𝑅 = 𝑉 → ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) = ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) )
219 oveq1 ( 𝑅 = 𝑉 → ( 𝑅 ·s 𝑆 ) = ( 𝑉 ·s 𝑆 ) )
220 218 219 oveq12d ( 𝑅 = 𝑉 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) = ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) )
221 220 breq1d ( 𝑅 = 𝑉 → ( ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ↔ ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ) )
222 216 221 syl5ibrcom ( 𝜑 → ( 𝑅 = 𝑉 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ) )
223 21 adantr ( ( 𝜑𝑉 <s 𝑅 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No )
224 31 18 addscld ( 𝜑 → ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) ∈ No )
225 224 207 subscld ( 𝜑 → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) ∈ No )
226 225 adantr ( ( 𝜑𝑉 <s 𝑅 ) → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) ∈ No )
227 34 adantr ( ( 𝜑𝑉 <s 𝑅 ) → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ∈ No )
228 ssltright ( 𝐵 No → { 𝐵 } <<s ( R ‘ 𝐵 ) )
229 3 228 syl ( 𝜑 → { 𝐵 } <<s ( R ‘ 𝐵 ) )
230 229 124 5 ssltsepcd ( 𝜑𝐵 <s 𝑆 )
231 55 uneq1i ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ) = ( ∅ ∪ ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) )
232 0un ( ∅ ∪ ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ) = ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) )
233 231 232 eqtri ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ) = ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) )
234 134 73 jca ( 𝜑 → ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
235 185 138 jca ( 𝜑 → ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
236 144 87 onun2i ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ On
237 189 147 onun2i ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ On
238 onunel ( ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ On ∧ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
239 236 237 95 238 mp3an ( ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
240 onunel ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∈ On ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
241 144 87 95 240 mp3an ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
242 onunel ( ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∈ On ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ On ∧ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On ) → ( ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
243 189 147 95 242 mp3an ( ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) )
244 241 243 anbi12i ( ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ↔ ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ∧ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
245 239 244 bitri ( ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ↔ ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ∧ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∧ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ) ) )
246 234 235 245 sylanbrc ( 𝜑 → ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
247 elun1 ( ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) → ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
248 246 247 syl ( 𝜑 → ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
249 233 248 eqeltrid ( 𝜑 → ( ( ( bday ‘ 0s ) +no ( bday ‘ 0s ) ) ∪ ( ( ( ( bday 𝑉 ) +no ( bday 𝐵 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝑆 ) ) ) ∪ ( ( ( bday 𝑉 ) +no ( bday 𝑆 ) ) ∪ ( ( bday 𝑅 ) +no ( bday 𝐵 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
250 1 45 45 10 9 3 49 249 mulsproplem1 ( 𝜑 → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝑉 <s 𝑅𝐵 <s 𝑆 ) → ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ) ) )
251 250 simprd ( 𝜑 → ( ( 𝑉 <s 𝑅𝐵 <s 𝑆 ) → ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ) )
252 230 251 mpan2d ( 𝜑 → ( 𝑉 <s 𝑅 → ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ) )
253 252 imp ( ( 𝜑𝑉 <s 𝑅 ) → ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) )
254 207 31 20 15 sltsubsub2bd ( 𝜑 → ( ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ↔ ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) ) )
255 15 20 subscld ( 𝜑 → ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) ∈ No )
256 31 207 subscld ( 𝜑 → ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) ∈ No )
257 255 256 18 sltadd1d ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) )
258 254 257 bitrd ( 𝜑 → ( ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) )
259 258 adantr ( ( 𝜑𝑉 <s 𝑅 ) → ( ( ( 𝑉 ·s 𝑆 ) -s ( 𝑉 ·s 𝐵 ) ) <s ( ( 𝑅 ·s 𝑆 ) -s ( 𝑅 ·s 𝐵 ) ) ↔ ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) ) )
260 253 259 mpbid ( ( 𝜑𝑉 <s 𝑅 ) → ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) )
261 15 18 20 addsubsd ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) = ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) )
262 261 adantr ( ( 𝜑𝑉 <s 𝑅 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) = ( ( ( 𝑅 ·s 𝐵 ) -s ( 𝑅 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) )
263 31 18 207 addsubsd ( 𝜑 → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) = ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) )
264 263 adantr ( ( 𝜑𝑉 <s 𝑅 ) → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) = ( ( ( 𝑉 ·s 𝐵 ) -s ( 𝑉 ·s 𝑆 ) ) +s ( 𝐴 ·s 𝑆 ) ) )
265 260 262 264 3brtr4d ( ( 𝜑𝑉 <s 𝑅 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) )
266 216 adantr ( ( 𝜑𝑉 <s 𝑅 ) → ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑉 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) )
267 223 226 227 265 266 slttrd ( ( 𝜑𝑉 <s 𝑅 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) )
268 267 ex ( 𝜑 → ( 𝑉 <s 𝑅 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ) )
269 178 222 268 3jaod ( 𝜑 → ( ( 𝑅 <s 𝑉𝑅 = 𝑉𝑉 <s 𝑅 ) → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) ) )
270 12 269 mpd ( 𝜑 → ( ( ( 𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑆 ) ) -s ( 𝑅 ·s 𝑆 ) ) <s ( ( ( 𝑉 ·s 𝐵 ) +s ( 𝐴 ·s 𝑊 ) ) -s ( 𝑉 ·s 𝑊 ) ) )