Step |
Hyp |
Ref |
Expression |
1 |
|
mulsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
2 |
|
mulsproplem9.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
3 |
|
mulsproplem9.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
4 |
|
eqid |
⊢ ( 𝑝 ∈ ( L ‘ 𝐴 ) , 𝑞 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) = ( 𝑝 ∈ ( L ‘ 𝐴 ) , 𝑞 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
5 |
4
|
rnmpo |
⊢ ran ( 𝑝 ∈ ( L ‘ 𝐴 ) , 𝑞 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) = { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } |
6 |
|
fvex |
⊢ ( L ‘ 𝐴 ) ∈ V |
7 |
|
fvex |
⊢ ( L ‘ 𝐵 ) ∈ V |
8 |
6 7
|
mpoex |
⊢ ( 𝑝 ∈ ( L ‘ 𝐴 ) , 𝑞 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ∈ V |
9 |
8
|
rnex |
⊢ ran ( 𝑝 ∈ ( L ‘ 𝐴 ) , 𝑞 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ∈ V |
10 |
5 9
|
eqeltrri |
⊢ { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∈ V |
11 |
|
eqid |
⊢ ( 𝑟 ∈ ( R ‘ 𝐴 ) , 𝑠 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) = ( 𝑟 ∈ ( R ‘ 𝐴 ) , 𝑠 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
12 |
11
|
rnmpo |
⊢ ran ( 𝑟 ∈ ( R ‘ 𝐴 ) , 𝑠 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) = { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } |
13 |
|
fvex |
⊢ ( R ‘ 𝐴 ) ∈ V |
14 |
|
fvex |
⊢ ( R ‘ 𝐵 ) ∈ V |
15 |
13 14
|
mpoex |
⊢ ( 𝑟 ∈ ( R ‘ 𝐴 ) , 𝑠 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∈ V |
16 |
15
|
rnex |
⊢ ran ( 𝑟 ∈ ( R ‘ 𝐴 ) , 𝑠 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∈ V |
17 |
12 16
|
eqeltrri |
⊢ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ∈ V |
18 |
10 17
|
unex |
⊢ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ∈ V |
19 |
18
|
a1i |
⊢ ( 𝜑 → ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ∈ V ) |
20 |
|
eqid |
⊢ ( 𝑡 ∈ ( L ‘ 𝐴 ) , 𝑢 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) = ( 𝑡 ∈ ( L ‘ 𝐴 ) , 𝑢 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) |
21 |
20
|
rnmpo |
⊢ ran ( 𝑡 ∈ ( L ‘ 𝐴 ) , 𝑢 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) = { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } |
22 |
6 14
|
mpoex |
⊢ ( 𝑡 ∈ ( L ‘ 𝐴 ) , 𝑢 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V |
23 |
22
|
rnex |
⊢ ran ( 𝑡 ∈ ( L ‘ 𝐴 ) , 𝑢 ∈ ( R ‘ 𝐵 ) ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V |
24 |
21 23
|
eqeltrri |
⊢ { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∈ V |
25 |
|
eqid |
⊢ ( 𝑣 ∈ ( R ‘ 𝐴 ) , 𝑤 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) = ( 𝑣 ∈ ( R ‘ 𝐴 ) , 𝑤 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) |
26 |
25
|
rnmpo |
⊢ ran ( 𝑣 ∈ ( R ‘ 𝐴 ) , 𝑤 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) = { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } |
27 |
13 7
|
mpoex |
⊢ ( 𝑣 ∈ ( R ‘ 𝐴 ) , 𝑤 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V |
28 |
27
|
rnex |
⊢ ran ( 𝑣 ∈ ( R ‘ 𝐴 ) , 𝑤 ∈ ( L ‘ 𝐵 ) ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V |
29 |
26 28
|
eqeltrri |
⊢ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ∈ V |
30 |
24 29
|
unex |
⊢ ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ∈ V |
31 |
30
|
a1i |
⊢ ( 𝜑 → ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ∈ V ) |
32 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
33 |
|
leftssold |
⊢ ( L ‘ 𝐴 ) ⊆ ( O ‘ ( bday ‘ 𝐴 ) ) |
34 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝑝 ∈ ( L ‘ 𝐴 ) ) |
35 |
33 34
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝑝 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
36 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝐵 ∈ No ) |
37 |
32 35 36
|
mulsproplem2 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑝 ·s 𝐵 ) ∈ No ) |
38 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝐴 ∈ No ) |
39 |
|
leftssold |
⊢ ( L ‘ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝐵 ) ) |
40 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝑞 ∈ ( L ‘ 𝐵 ) ) |
41 |
39 40
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝑞 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ) |
42 |
32 38 41
|
mulsproplem3 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝐴 ·s 𝑞 ) ∈ No ) |
43 |
37 42
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) ∈ No ) |
44 |
32 35 41
|
mulsproplem4 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑝 ·s 𝑞 ) ∈ No ) |
45 |
43 44
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No ) |
46 |
|
eleq1 |
⊢ ( 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( 𝑔 ∈ No ↔ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No ) ) |
47 |
45 46
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → 𝑔 ∈ No ) ) |
48 |
47
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → 𝑔 ∈ No ) ) |
49 |
48
|
abssdv |
⊢ ( 𝜑 → { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ⊆ No ) |
50 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
51 |
|
rightssold |
⊢ ( R ‘ 𝐴 ) ⊆ ( O ‘ ( bday ‘ 𝐴 ) ) |
52 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝑟 ∈ ( R ‘ 𝐴 ) ) |
53 |
51 52
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝑟 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
54 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝐵 ∈ No ) |
55 |
50 53 54
|
mulsproplem2 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑟 ·s 𝐵 ) ∈ No ) |
56 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝐴 ∈ No ) |
57 |
|
rightssold |
⊢ ( R ‘ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝐵 ) ) |
58 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝑠 ∈ ( R ‘ 𝐵 ) ) |
59 |
57 58
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝑠 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ) |
60 |
50 56 59
|
mulsproplem3 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝐴 ·s 𝑠 ) ∈ No ) |
61 |
55 60
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) ∈ No ) |
62 |
50 53 59
|
mulsproplem4 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑟 ·s 𝑠 ) ∈ No ) |
63 |
61 62
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∈ No ) |
64 |
|
eleq1 |
⊢ ( ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( ℎ ∈ No ↔ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∈ No ) ) |
65 |
63 64
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ℎ ∈ No ) ) |
66 |
65
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ℎ ∈ No ) ) |
67 |
66
|
abssdv |
⊢ ( 𝜑 → { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ⊆ No ) |
68 |
49 67
|
unssd |
⊢ ( 𝜑 → ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ⊆ No ) |
69 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
70 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝑡 ∈ ( L ‘ 𝐴 ) ) |
71 |
33 70
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝑡 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
72 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝐵 ∈ No ) |
73 |
69 71 72
|
mulsproplem2 |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑡 ·s 𝐵 ) ∈ No ) |
74 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝐴 ∈ No ) |
75 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝑢 ∈ ( R ‘ 𝐵 ) ) |
76 |
57 75
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝑢 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ) |
77 |
69 74 76
|
mulsproplem3 |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝐴 ·s 𝑢 ) ∈ No ) |
78 |
73 77
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) ∈ No ) |
79 |
69 71 76
|
mulsproplem4 |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑡 ·s 𝑢 ) ∈ No ) |
80 |
78 79
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No ) |
81 |
|
eleq1 |
⊢ ( 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( 𝑖 ∈ No ↔ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No ) ) |
82 |
80 81
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑖 ∈ No ) ) |
83 |
82
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑖 ∈ No ) ) |
84 |
83
|
abssdv |
⊢ ( 𝜑 → { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ⊆ No ) |
85 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
86 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝑣 ∈ ( R ‘ 𝐴 ) ) |
87 |
51 86
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝑣 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
88 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝐵 ∈ No ) |
89 |
85 87 88
|
mulsproplem2 |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑣 ·s 𝐵 ) ∈ No ) |
90 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝐴 ∈ No ) |
91 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝑤 ∈ ( L ‘ 𝐵 ) ) |
92 |
39 91
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝑤 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ) |
93 |
85 90 92
|
mulsproplem3 |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝐴 ·s 𝑤 ) ∈ No ) |
94 |
89 93
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) ∈ No ) |
95 |
85 87 92
|
mulsproplem4 |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑣 ·s 𝑤 ) ∈ No ) |
96 |
94 95
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No ) |
97 |
|
eleq1 |
⊢ ( 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( 𝑗 ∈ No ↔ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No ) ) |
98 |
96 97
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑗 ∈ No ) ) |
99 |
98
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑗 ∈ No ) ) |
100 |
99
|
abssdv |
⊢ ( 𝜑 → { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ⊆ No ) |
101 |
84 100
|
unssd |
⊢ ( 𝜑 → ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ⊆ No ) |
102 |
|
elun |
⊢ ( 𝑥 ∈ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ↔ ( 𝑥 ∈ { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∨ 𝑥 ∈ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ) |
103 |
|
vex |
⊢ 𝑥 ∈ V |
104 |
|
eqeq1 |
⊢ ( 𝑔 = 𝑥 → ( 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
105 |
104
|
2rexbidv |
⊢ ( 𝑔 = 𝑥 → ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
106 |
103 105
|
elab |
⊢ ( 𝑥 ∈ { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ↔ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
107 |
|
eqeq1 |
⊢ ( ℎ = 𝑥 → ( ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ↔ 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
108 |
107
|
2rexbidv |
⊢ ( ℎ = 𝑥 → ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
109 |
103 108
|
elab |
⊢ ( 𝑥 ∈ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ↔ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
110 |
106 109
|
orbi12i |
⊢ ( ( 𝑥 ∈ { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∨ 𝑥 ∈ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ↔ ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∨ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
111 |
102 110
|
bitri |
⊢ ( 𝑥 ∈ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ↔ ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∨ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
112 |
|
elun |
⊢ ( 𝑦 ∈ ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ ( 𝑦 ∈ { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∨ 𝑦 ∈ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) |
113 |
|
vex |
⊢ 𝑦 ∈ V |
114 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑦 → ( 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
115 |
114
|
2rexbidv |
⊢ ( 𝑖 = 𝑦 → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
116 |
113 115
|
elab |
⊢ ( 𝑦 ∈ { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ↔ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) |
117 |
|
eqeq1 |
⊢ ( 𝑗 = 𝑦 → ( 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
118 |
117
|
2rexbidv |
⊢ ( 𝑗 = 𝑦 → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
119 |
113 118
|
elab |
⊢ ( 𝑦 ∈ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ↔ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) |
120 |
116 119
|
orbi12i |
⊢ ( ( 𝑦 ∈ { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∨ 𝑦 ∈ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∨ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
121 |
112 120
|
bitri |
⊢ ( 𝑦 ∈ ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∨ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
122 |
111 121
|
anbi12i |
⊢ ( ( 𝑥 ∈ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ∧ 𝑦 ∈ ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ↔ ( ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∨ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∧ ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∨ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) ) |
123 |
|
anddi |
⊢ ( ( ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∨ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∧ ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∨ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) ↔ ( ( ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∨ ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) ∨ ( ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∨ ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) ) ) |
124 |
122 123
|
bitri |
⊢ ( ( 𝑥 ∈ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ∧ 𝑦 ∈ ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ↔ ( ( ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∨ ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) ∨ ( ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∨ ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) ) ) |
125 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
126 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝐴 ∈ No ) |
127 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝐵 ∈ No ) |
128 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝑝 ∈ ( L ‘ 𝐴 ) ) |
129 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝑞 ∈ ( L ‘ 𝐵 ) ) |
130 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝑡 ∈ ( L ‘ 𝐴 ) ) |
131 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝑢 ∈ ( R ‘ 𝐵 ) ) |
132 |
125 126 127 128 129 130 131
|
mulsproplem5 |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) |
133 |
|
breq2 |
⊢ ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ↔ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
134 |
132 133
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) |
135 |
134
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) |
136 |
135
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) |
137 |
|
breq1 |
⊢ ( 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( 𝑥 <s 𝑦 ↔ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) |
138 |
137
|
imbi2d |
⊢ ( 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑥 <s 𝑦 ) ↔ ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) ) |
139 |
136 138
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑥 <s 𝑦 ) ) ) |
140 |
139
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑥 <s 𝑦 ) ) ) |
141 |
140
|
impd |
⊢ ( 𝜑 → ( ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) → 𝑥 <s 𝑦 ) ) |
142 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
143 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝐴 ∈ No ) |
144 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝐵 ∈ No ) |
145 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝑝 ∈ ( L ‘ 𝐴 ) ) |
146 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝑞 ∈ ( L ‘ 𝐵 ) ) |
147 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝑣 ∈ ( R ‘ 𝐴 ) ) |
148 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝑤 ∈ ( L ‘ 𝐵 ) ) |
149 |
142 143 144 145 146 147 148
|
mulsproplem6 |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) |
150 |
|
breq2 |
⊢ ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ↔ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
151 |
149 150
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) |
152 |
151
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) |
153 |
152
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) |
154 |
137
|
imbi2d |
⊢ ( 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑥 <s 𝑦 ) ↔ ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s 𝑦 ) ) ) |
155 |
153 154
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑥 <s 𝑦 ) ) ) |
156 |
155
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑥 <s 𝑦 ) ) ) |
157 |
156
|
impd |
⊢ ( 𝜑 → ( ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) → 𝑥 <s 𝑦 ) ) |
158 |
141 157
|
jaod |
⊢ ( 𝜑 → ( ( ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∨ ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) → 𝑥 <s 𝑦 ) ) |
159 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
160 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝐴 ∈ No ) |
161 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝐵 ∈ No ) |
162 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝑟 ∈ ( R ‘ 𝐴 ) ) |
163 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝑠 ∈ ( R ‘ 𝐵 ) ) |
164 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝑡 ∈ ( L ‘ 𝐴 ) ) |
165 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → 𝑢 ∈ ( R ‘ 𝐵 ) ) |
166 |
159 160 161 162 163 164 165
|
mulsproplem7 |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) |
167 |
|
breq2 |
⊢ ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ↔ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
168 |
166 167
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) ) → ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) |
169 |
168
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) |
170 |
169
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) |
171 |
|
breq1 |
⊢ ( 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( 𝑥 <s 𝑦 ↔ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) |
172 |
171
|
imbi2d |
⊢ ( 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑥 <s 𝑦 ) ↔ ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) ) |
173 |
170 172
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑥 <s 𝑦 ) ) ) |
174 |
173
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑥 <s 𝑦 ) ) ) |
175 |
174
|
impd |
⊢ ( 𝜑 → ( ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) → 𝑥 <s 𝑦 ) ) |
176 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → ∀ 𝑎 ∈ No ∀ 𝑏 ∈ No ∀ 𝑐 ∈ No ∀ 𝑑 ∈ No ∀ 𝑒 ∈ No ∀ 𝑓 ∈ No ( ( ( ( bday ‘ 𝑎 ) +no ( bday ‘ 𝑏 ) ) ∪ ( ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑒 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑓 ) ) ) ∪ ( ( ( bday ‘ 𝑐 ) +no ( bday ‘ 𝑓 ) ) ∪ ( ( bday ‘ 𝑑 ) +no ( bday ‘ 𝑒 ) ) ) ) ) ∈ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐸 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐹 ) ) ) ∪ ( ( ( bday ‘ 𝐶 ) +no ( bday ‘ 𝐹 ) ) ∪ ( ( bday ‘ 𝐷 ) +no ( bday ‘ 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) |
177 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝐴 ∈ No ) |
178 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝐵 ∈ No ) |
179 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝑟 ∈ ( R ‘ 𝐴 ) ) |
180 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝑠 ∈ ( R ‘ 𝐵 ) ) |
181 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝑣 ∈ ( R ‘ 𝐴 ) ) |
182 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → 𝑤 ∈ ( L ‘ 𝐵 ) ) |
183 |
176 177 178 179 180 181 182
|
mulsproplem8 |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) |
184 |
|
breq2 |
⊢ ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ↔ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
185 |
183 184
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) ) → ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) |
186 |
185
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) |
187 |
186
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) |
188 |
171
|
imbi2d |
⊢ ( 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑥 <s 𝑦 ) ↔ ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s 𝑦 ) ) ) |
189 |
187 188
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑥 <s 𝑦 ) ) ) |
190 |
189
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑥 <s 𝑦 ) ) ) |
191 |
190
|
impd |
⊢ ( 𝜑 → ( ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) → 𝑥 <s 𝑦 ) ) |
192 |
175 191
|
jaod |
⊢ ( 𝜑 → ( ( ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∨ ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) → 𝑥 <s 𝑦 ) ) |
193 |
158 192
|
jaod |
⊢ ( 𝜑 → ( ( ( ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∨ ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) ∨ ( ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∨ ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) ) → 𝑥 <s 𝑦 ) ) |
194 |
124 193
|
biimtrid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ∧ 𝑦 ∈ ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) → 𝑥 <s 𝑦 ) ) |
195 |
194
|
3impib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ∧ 𝑦 ∈ ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) → 𝑥 <s 𝑦 ) |
196 |
19 31 68 101 195
|
ssltd |
⊢ ( 𝜑 → ( { 𝑔 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑔 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { ℎ ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s ( { 𝑖 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑗 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑗 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) |