Metamath Proof Explorer


Theorem mulsrid

Description: Surreal one is a right identity element for multiplication. (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion mulsrid ( 𝐴 No → ( 𝐴 ·s 1s ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝑥 = 𝑥𝑂 → ( 𝑥 ·s 1s ) = ( 𝑥𝑂 ·s 1s ) )
2 id ( 𝑥 = 𝑥𝑂𝑥 = 𝑥𝑂 )
3 1 2 eqeq12d ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 ·s 1s ) = 𝑥 ↔ ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) )
4 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 ·s 1s ) = ( 𝐴 ·s 1s ) )
5 id ( 𝑥 = 𝐴𝑥 = 𝐴 )
6 4 5 eqeq12d ( 𝑥 = 𝐴 → ( ( 𝑥 ·s 1s ) = 𝑥 ↔ ( 𝐴 ·s 1s ) = 𝐴 ) )
7 1sno 1s No
8 mulsval ( ( 𝑥 No ∧ 1s No ) → ( 𝑥 ·s 1s ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 1s ) 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 1s ) 𝑏 = ( ( ( 𝑟 ·s 1s ) +s ( 𝑥 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 1s ) 𝑐 = ( ( ( 𝑡 ·s 1s ) +s ( 𝑥 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 1s ) 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )
9 7 8 mpan2 ( 𝑥 No → ( 𝑥 ·s 1s ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 1s ) 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 1s ) 𝑏 = ( ( ( 𝑟 ·s 1s ) +s ( 𝑥 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 1s ) 𝑐 = ( ( ( 𝑡 ·s 1s ) +s ( 𝑥 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 1s ) 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )
10 9 adantr ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → ( 𝑥 ·s 1s ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 1s ) 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 1s ) 𝑏 = ( ( ( 𝑟 ·s 1s ) +s ( 𝑥 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 1s ) 𝑐 = ( ( ( 𝑡 ·s 1s ) +s ( 𝑥 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 1s ) 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )
11 elun1 ( 𝑝 ∈ ( L ‘ 𝑥 ) → 𝑝 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) )
12 oveq1 ( 𝑥𝑂 = 𝑝 → ( 𝑥𝑂 ·s 1s ) = ( 𝑝 ·s 1s ) )
13 id ( 𝑥𝑂 = 𝑝𝑥𝑂 = 𝑝 )
14 12 13 eqeq12d ( 𝑥𝑂 = 𝑝 → ( ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ↔ ( 𝑝 ·s 1s ) = 𝑝 ) )
15 14 rspcva ( ( 𝑝 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → ( 𝑝 ·s 1s ) = 𝑝 )
16 11 15 sylan ( ( 𝑝 ∈ ( L ‘ 𝑥 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → ( 𝑝 ·s 1s ) = 𝑝 )
17 16 ancoms ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂𝑝 ∈ ( L ‘ 𝑥 ) ) → ( 𝑝 ·s 1s ) = 𝑝 )
18 17 adantll ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑝 ∈ ( L ‘ 𝑥 ) ) → ( 𝑝 ·s 1s ) = 𝑝 )
19 muls01 ( 𝑥 No → ( 𝑥 ·s 0s ) = 0s )
20 19 adantr ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → ( 𝑥 ·s 0s ) = 0s )
21 20 adantr ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑝 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥 ·s 0s ) = 0s )
22 18 21 oveq12d ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑝 ∈ ( L ‘ 𝑥 ) ) → ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 0s ) ) = ( 𝑝 +s 0s ) )
23 leftssno ( L ‘ 𝑥 ) ⊆ No
24 23 sseli ( 𝑝 ∈ ( L ‘ 𝑥 ) → 𝑝 No )
25 24 adantl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑝 ∈ ( L ‘ 𝑥 ) ) → 𝑝 No )
26 25 addsridd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑝 ∈ ( L ‘ 𝑥 ) ) → ( 𝑝 +s 0s ) = 𝑝 )
27 22 26 eqtrd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑝 ∈ ( L ‘ 𝑥 ) ) → ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 0s ) ) = 𝑝 )
28 muls01 ( 𝑝 No → ( 𝑝 ·s 0s ) = 0s )
29 25 28 syl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑝 ∈ ( L ‘ 𝑥 ) ) → ( 𝑝 ·s 0s ) = 0s )
30 27 29 oveq12d ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑝 ∈ ( L ‘ 𝑥 ) ) → ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 0s ) ) -s ( 𝑝 ·s 0s ) ) = ( 𝑝 -s 0s ) )
31 subsid1 ( 𝑝 No → ( 𝑝 -s 0s ) = 𝑝 )
32 25 31 syl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑝 ∈ ( L ‘ 𝑥 ) ) → ( 𝑝 -s 0s ) = 𝑝 )
33 30 32 eqtrd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑝 ∈ ( L ‘ 𝑥 ) ) → ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 0s ) ) -s ( 𝑝 ·s 0s ) ) = 𝑝 )
34 33 eqeq2d ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑝 ∈ ( L ‘ 𝑥 ) ) → ( 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 0s ) ) -s ( 𝑝 ·s 0s ) ) ↔ 𝑎 = 𝑝 ) )
35 equcom ( 𝑎 = 𝑝𝑝 = 𝑎 )
36 34 35 bitrdi ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑝 ∈ ( L ‘ 𝑥 ) ) → ( 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 0s ) ) -s ( 𝑝 ·s 0s ) ) ↔ 𝑝 = 𝑎 ) )
37 36 rexbidva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → ( ∃ 𝑝 ∈ ( L ‘ 𝑥 ) 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 0s ) ) -s ( 𝑝 ·s 0s ) ) ↔ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) 𝑝 = 𝑎 ) )
38 left1s ( L ‘ 1s ) = { 0s }
39 38 rexeqi ( ∃ 𝑞 ∈ ( L ‘ 1s ) 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ∃ 𝑞 ∈ { 0s } 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) )
40 0sno 0s No
41 40 elexi 0s ∈ V
42 oveq2 ( 𝑞 = 0s → ( 𝑥 ·s 𝑞 ) = ( 𝑥 ·s 0s ) )
43 42 oveq2d ( 𝑞 = 0s → ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 𝑞 ) ) = ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 0s ) ) )
44 oveq2 ( 𝑞 = 0s → ( 𝑝 ·s 𝑞 ) = ( 𝑝 ·s 0s ) )
45 43 44 oveq12d ( 𝑞 = 0s → ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 0s ) ) -s ( 𝑝 ·s 0s ) ) )
46 45 eqeq2d ( 𝑞 = 0s → ( 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 0s ) ) -s ( 𝑝 ·s 0s ) ) ) )
47 41 46 rexsn ( ∃ 𝑞 ∈ { 0s } 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 0s ) ) -s ( 𝑝 ·s 0s ) ) )
48 39 47 bitri ( ∃ 𝑞 ∈ ( L ‘ 1s ) 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 0s ) ) -s ( 𝑝 ·s 0s ) ) )
49 48 rexbii ( ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 1s ) 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 0s ) ) -s ( 𝑝 ·s 0s ) ) )
50 risset ( 𝑎 ∈ ( L ‘ 𝑥 ) ↔ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) 𝑝 = 𝑎 )
51 37 49 50 3bitr4g ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → ( ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 1s ) 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ 𝑎 ∈ ( L ‘ 𝑥 ) ) )
52 51 eqabcdv ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 1s ) 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } = ( L ‘ 𝑥 ) )
53 rex0 ¬ ∃ 𝑠 ∈ ∅ 𝑏 = ( ( ( 𝑟 ·s 1s ) +s ( 𝑥 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) )
54 right1s ( R ‘ 1s ) = ∅
55 54 rexeqi ( ∃ 𝑠 ∈ ( R ‘ 1s ) 𝑏 = ( ( ( 𝑟 ·s 1s ) +s ( 𝑥 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ↔ ∃ 𝑠 ∈ ∅ 𝑏 = ( ( ( 𝑟 ·s 1s ) +s ( 𝑥 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
56 53 55 mtbir ¬ ∃ 𝑠 ∈ ( R ‘ 1s ) 𝑏 = ( ( ( 𝑟 ·s 1s ) +s ( 𝑥 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) )
57 56 a1i ( 𝑟 ∈ ( R ‘ 𝑥 ) → ¬ ∃ 𝑠 ∈ ( R ‘ 1s ) 𝑏 = ( ( ( 𝑟 ·s 1s ) +s ( 𝑥 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
58 57 nrex ¬ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 1s ) 𝑏 = ( ( ( 𝑟 ·s 1s ) +s ( 𝑥 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) )
59 58 abf { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 1s ) 𝑏 = ( ( ( 𝑟 ·s 1s ) +s ( 𝑥 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } = ∅
60 59 a1i ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 1s ) 𝑏 = ( ( ( 𝑟 ·s 1s ) +s ( 𝑥 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } = ∅ )
61 52 60 uneq12d ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 1s ) 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 1s ) 𝑏 = ( ( ( 𝑟 ·s 1s ) +s ( 𝑥 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) = ( ( L ‘ 𝑥 ) ∪ ∅ ) )
62 un0 ( ( L ‘ 𝑥 ) ∪ ∅ ) = ( L ‘ 𝑥 )
63 61 62 eqtrdi ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 1s ) 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 1s ) 𝑏 = ( ( ( 𝑟 ·s 1s ) +s ( 𝑥 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) = ( L ‘ 𝑥 ) )
64 rex0 ¬ ∃ 𝑢 ∈ ∅ 𝑐 = ( ( ( 𝑡 ·s 1s ) +s ( 𝑥 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) )
65 54 rexeqi ( ∃ 𝑢 ∈ ( R ‘ 1s ) 𝑐 = ( ( ( 𝑡 ·s 1s ) +s ( 𝑥 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ ∃ 𝑢 ∈ ∅ 𝑐 = ( ( ( 𝑡 ·s 1s ) +s ( 𝑥 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) )
66 64 65 mtbir ¬ ∃ 𝑢 ∈ ( R ‘ 1s ) 𝑐 = ( ( ( 𝑡 ·s 1s ) +s ( 𝑥 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) )
67 66 a1i ( 𝑡 ∈ ( L ‘ 𝑥 ) → ¬ ∃ 𝑢 ∈ ( R ‘ 1s ) 𝑐 = ( ( ( 𝑡 ·s 1s ) +s ( 𝑥 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) )
68 67 nrex ¬ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 1s ) 𝑐 = ( ( ( 𝑡 ·s 1s ) +s ( 𝑥 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) )
69 68 abf { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 1s ) 𝑐 = ( ( ( 𝑡 ·s 1s ) +s ( 𝑥 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } = ∅
70 69 a1i ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 1s ) 𝑐 = ( ( ( 𝑡 ·s 1s ) +s ( 𝑥 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } = ∅ )
71 elun2 ( 𝑣 ∈ ( R ‘ 𝑥 ) → 𝑣 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) )
72 oveq1 ( 𝑥𝑂 = 𝑣 → ( 𝑥𝑂 ·s 1s ) = ( 𝑣 ·s 1s ) )
73 id ( 𝑥𝑂 = 𝑣𝑥𝑂 = 𝑣 )
74 72 73 eqeq12d ( 𝑥𝑂 = 𝑣 → ( ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ↔ ( 𝑣 ·s 1s ) = 𝑣 ) )
75 74 rspcva ( ( 𝑣 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → ( 𝑣 ·s 1s ) = 𝑣 )
76 71 75 sylan ( ( 𝑣 ∈ ( R ‘ 𝑥 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → ( 𝑣 ·s 1s ) = 𝑣 )
77 76 ancoms ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂𝑣 ∈ ( R ‘ 𝑥 ) ) → ( 𝑣 ·s 1s ) = 𝑣 )
78 77 adantll ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑣 ∈ ( R ‘ 𝑥 ) ) → ( 𝑣 ·s 1s ) = 𝑣 )
79 20 adantr ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑣 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥 ·s 0s ) = 0s )
80 78 79 oveq12d ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑣 ∈ ( R ‘ 𝑥 ) ) → ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 0s ) ) = ( 𝑣 +s 0s ) )
81 rightssno ( R ‘ 𝑥 ) ⊆ No
82 81 sseli ( 𝑣 ∈ ( R ‘ 𝑥 ) → 𝑣 No )
83 82 adantl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑣 ∈ ( R ‘ 𝑥 ) ) → 𝑣 No )
84 83 addsridd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑣 ∈ ( R ‘ 𝑥 ) ) → ( 𝑣 +s 0s ) = 𝑣 )
85 80 84 eqtrd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑣 ∈ ( R ‘ 𝑥 ) ) → ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 0s ) ) = 𝑣 )
86 muls01 ( 𝑣 No → ( 𝑣 ·s 0s ) = 0s )
87 83 86 syl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑣 ∈ ( R ‘ 𝑥 ) ) → ( 𝑣 ·s 0s ) = 0s )
88 85 87 oveq12d ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑣 ∈ ( R ‘ 𝑥 ) ) → ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 0s ) ) -s ( 𝑣 ·s 0s ) ) = ( 𝑣 -s 0s ) )
89 subsid1 ( 𝑣 No → ( 𝑣 -s 0s ) = 𝑣 )
90 83 89 syl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑣 ∈ ( R ‘ 𝑥 ) ) → ( 𝑣 -s 0s ) = 𝑣 )
91 88 90 eqtrd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑣 ∈ ( R ‘ 𝑥 ) ) → ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 0s ) ) -s ( 𝑣 ·s 0s ) ) = 𝑣 )
92 91 eqeq2d ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑣 ∈ ( R ‘ 𝑥 ) ) → ( 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 0s ) ) -s ( 𝑣 ·s 0s ) ) ↔ 𝑑 = 𝑣 ) )
93 38 rexeqi ( ∃ 𝑤 ∈ ( L ‘ 1s ) 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ ∃ 𝑤 ∈ { 0s } 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) )
94 oveq2 ( 𝑤 = 0s → ( 𝑥 ·s 𝑤 ) = ( 𝑥 ·s 0s ) )
95 94 oveq2d ( 𝑤 = 0s → ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 𝑤 ) ) = ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 0s ) ) )
96 oveq2 ( 𝑤 = 0s → ( 𝑣 ·s 𝑤 ) = ( 𝑣 ·s 0s ) )
97 95 96 oveq12d ( 𝑤 = 0s → ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 0s ) ) -s ( 𝑣 ·s 0s ) ) )
98 97 eqeq2d ( 𝑤 = 0s → ( 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 0s ) ) -s ( 𝑣 ·s 0s ) ) ) )
99 41 98 rexsn ( ∃ 𝑤 ∈ { 0s } 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 0s ) ) -s ( 𝑣 ·s 0s ) ) )
100 93 99 bitri ( ∃ 𝑤 ∈ ( L ‘ 1s ) 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 0s ) ) -s ( 𝑣 ·s 0s ) ) )
101 equcom ( 𝑣 = 𝑑𝑑 = 𝑣 )
102 92 100 101 3bitr4g ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) ∧ 𝑣 ∈ ( R ‘ 𝑥 ) ) → ( ∃ 𝑤 ∈ ( L ‘ 1s ) 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ 𝑣 = 𝑑 ) )
103 102 rexbidva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → ( ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 1s ) 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) 𝑣 = 𝑑 ) )
104 risset ( 𝑑 ∈ ( R ‘ 𝑥 ) ↔ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) 𝑣 = 𝑑 )
105 103 104 bitr4di ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → ( ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 1s ) 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ 𝑑 ∈ ( R ‘ 𝑥 ) ) )
106 105 eqabcdv ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 1s ) 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } = ( R ‘ 𝑥 ) )
107 70 106 uneq12d ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 1s ) 𝑐 = ( ( ( 𝑡 ·s 1s ) +s ( 𝑥 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 1s ) 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) = ( ∅ ∪ ( R ‘ 𝑥 ) ) )
108 0un ( ∅ ∪ ( R ‘ 𝑥 ) ) = ( R ‘ 𝑥 )
109 107 108 eqtrdi ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 1s ) 𝑐 = ( ( ( 𝑡 ·s 1s ) +s ( 𝑥 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 1s ) 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) = ( R ‘ 𝑥 ) )
110 63 109 oveq12d ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 1s ) 𝑎 = ( ( ( 𝑝 ·s 1s ) +s ( 𝑥 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 1s ) 𝑏 = ( ( ( 𝑟 ·s 1s ) +s ( 𝑥 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 1s ) 𝑐 = ( ( ( 𝑡 ·s 1s ) +s ( 𝑥 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 1s ) 𝑑 = ( ( ( 𝑣 ·s 1s ) +s ( 𝑥 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) = ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) )
111 lrcut ( 𝑥 No → ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) = 𝑥 )
112 111 adantr ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) = 𝑥 )
113 10 110 112 3eqtrd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 ) → ( 𝑥 ·s 1s ) = 𝑥 )
114 113 ex ( 𝑥 No → ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s 1s ) = 𝑥𝑂 → ( 𝑥 ·s 1s ) = 𝑥 ) )
115 3 6 114 noinds ( 𝐴 No → ( 𝐴 ·s 1s ) = 𝐴 )