Description: Product of two differences. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulm1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| mulnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| subdid.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| muladdd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | ||
| Assertion | mulsubd | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) · ( 𝐶 − 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) − ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mulm1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | mulnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | subdid.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | muladdd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | |
| 5 | mulsub | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 − 𝐵 ) · ( 𝐶 − 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) − ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) ) | |
| 6 | 1 2 3 4 5 | syl22anc | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) · ( 𝐶 − 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) − ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) ) |