Description: Multiplication followed by the subtraction of a factor. (Contributed by Alexander van der Vekens, 28-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | muls1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| muls1d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| Assertion | mulsubfacd | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) − 𝐵 ) = ( ( 𝐴 − 1 ) · 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | muls1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | muls1d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 4 | 1 3 2 | subdird | ⊢ ( 𝜑 → ( ( 𝐴 − 1 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) − ( 1 · 𝐵 ) ) ) | 
| 5 | 2 | mullidd | ⊢ ( 𝜑 → ( 1 · 𝐵 ) = 𝐵 ) | 
| 6 | 5 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) − ( 1 · 𝐵 ) ) = ( ( 𝐴 · 𝐵 ) − 𝐵 ) ) | 
| 7 | 4 6 | eqtr2d | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) − 𝐵 ) = ( ( 𝐴 − 1 ) · 𝐵 ) ) |