Metamath Proof Explorer


Theorem mulsubfacd

Description: Multiplication followed by the subtraction of a factor. (Contributed by Alexander van der Vekens, 28-Aug-2018)

Ref Expression
Hypotheses muls1d.1 ( 𝜑𝐴 ∈ ℂ )
muls1d.2 ( 𝜑𝐵 ∈ ℂ )
Assertion mulsubfacd ( 𝜑 → ( ( 𝐴 · 𝐵 ) − 𝐵 ) = ( ( 𝐴 − 1 ) · 𝐵 ) )

Proof

Step Hyp Ref Expression
1 muls1d.1 ( 𝜑𝐴 ∈ ℂ )
2 muls1d.2 ( 𝜑𝐵 ∈ ℂ )
3 1cnd ( 𝜑 → 1 ∈ ℂ )
4 1 3 2 subdird ( 𝜑 → ( ( 𝐴 − 1 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) − ( 1 · 𝐵 ) ) )
5 2 mulid2d ( 𝜑 → ( 1 · 𝐵 ) = 𝐵 )
6 5 oveq2d ( 𝜑 → ( ( 𝐴 · 𝐵 ) − ( 1 · 𝐵 ) ) = ( ( 𝐴 · 𝐵 ) − 𝐵 ) )
7 4 6 eqtr2d ( 𝜑 → ( ( 𝐴 · 𝐵 ) − 𝐵 ) = ( ( 𝐴 − 1 ) · 𝐵 ) )