Metamath Proof Explorer


Theorem mulsunif

Description: Surreal multiplication has the uniformity property. That is, any cuts that define A and B can be used in the definition of ( A x.s B ) . Theorem 3.5 of Gonshor p. 18. (Contributed by Scott Fenton, 7-Mar-2025)

Ref Expression
Hypotheses mulsunif.1 ( 𝜑𝐿 <<s 𝑅 )
mulsunif.2 ( 𝜑𝑀 <<s 𝑆 )
mulsunif.3 ( 𝜑𝐴 = ( 𝐿 |s 𝑅 ) )
mulsunif.4 ( 𝜑𝐵 = ( 𝑀 |s 𝑆 ) )
Assertion mulsunif ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )

Proof

Step Hyp Ref Expression
1 mulsunif.1 ( 𝜑𝐿 <<s 𝑅 )
2 mulsunif.2 ( 𝜑𝑀 <<s 𝑆 )
3 mulsunif.3 ( 𝜑𝐴 = ( 𝐿 |s 𝑅 ) )
4 mulsunif.4 ( 𝜑𝐵 = ( 𝑀 |s 𝑆 ) )
5 1 2 3 4 mulsuniflem ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑒 ∣ ∃ 𝑓𝐿𝑔𝑀 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ∣ ∃ 𝑖𝑅𝑗𝑆 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) |s ( { 𝑘 ∣ ∃ 𝑙𝐿𝑚𝑆 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑜𝑅𝑥𝑀 𝑛 = ( ( ( 𝑜 ·s 𝐵 ) +s ( 𝐴 ·s 𝑥 ) ) -s ( 𝑜 ·s 𝑥 ) ) } ) ) )
6 mulsval2lem { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } = { 𝑒 ∣ ∃ 𝑓𝐿𝑔𝑀 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) }
7 mulsval2lem { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } = { ∣ ∃ 𝑖𝑅𝑗𝑆 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) }
8 6 7 uneq12i ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) = ( { 𝑒 ∣ ∃ 𝑓𝐿𝑔𝑀 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ∣ ∃ 𝑖𝑅𝑗𝑆 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } )
9 mulsval2lem { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } = { 𝑘 ∣ ∃ 𝑙𝐿𝑚𝑆 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) }
10 mulsval2lem { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } = { 𝑛 ∣ ∃ 𝑜𝑅𝑥𝑀 𝑛 = ( ( ( 𝑜 ·s 𝐵 ) +s ( 𝐴 ·s 𝑥 ) ) -s ( 𝑜 ·s 𝑥 ) ) }
11 9 10 uneq12i ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) = ( { 𝑘 ∣ ∃ 𝑙𝐿𝑚𝑆 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑜𝑅𝑥𝑀 𝑛 = ( ( ( 𝑜 ·s 𝐵 ) +s ( 𝐴 ·s 𝑥 ) ) -s ( 𝑜 ·s 𝑥 ) ) } )
12 8 11 oveq12i ( ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) = ( ( { 𝑒 ∣ ∃ 𝑓𝐿𝑔𝑀 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ∣ ∃ 𝑖𝑅𝑗𝑆 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) |s ( { 𝑘 ∣ ∃ 𝑙𝐿𝑚𝑆 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑜𝑅𝑥𝑀 𝑛 = ( ( ( 𝑜 ·s 𝐵 ) +s ( 𝐴 ·s 𝑥 ) ) -s ( 𝑜 ·s 𝑥 ) ) } ) )
13 5 12 eqtr4di ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )