Step |
Hyp |
Ref |
Expression |
1 |
|
mulsunif.1 |
⊢ ( 𝜑 → 𝐿 <<s 𝑅 ) |
2 |
|
mulsunif.2 |
⊢ ( 𝜑 → 𝑀 <<s 𝑆 ) |
3 |
|
mulsunif.3 |
⊢ ( 𝜑 → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
4 |
|
mulsunif.4 |
⊢ ( 𝜑 → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
5 |
1 2 3 4
|
mulsuniflem |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑒 ∣ ∃ 𝑓 ∈ 𝐿 ∃ 𝑔 ∈ 𝑀 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ℎ ∣ ∃ 𝑖 ∈ 𝑅 ∃ 𝑗 ∈ 𝑆 ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) |s ( { 𝑘 ∣ ∃ 𝑙 ∈ 𝐿 ∃ 𝑚 ∈ 𝑆 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑜 ∈ 𝑅 ∃ 𝑥 ∈ 𝑀 𝑛 = ( ( ( 𝑜 ·s 𝐵 ) +s ( 𝐴 ·s 𝑥 ) ) -s ( 𝑜 ·s 𝑥 ) ) } ) ) ) |
6 |
|
mulsval2lem |
⊢ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } = { 𝑒 ∣ ∃ 𝑓 ∈ 𝐿 ∃ 𝑔 ∈ 𝑀 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } |
7 |
|
mulsval2lem |
⊢ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } = { ℎ ∣ ∃ 𝑖 ∈ 𝑅 ∃ 𝑗 ∈ 𝑆 ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } |
8 |
6 7
|
uneq12i |
⊢ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) = ( { 𝑒 ∣ ∃ 𝑓 ∈ 𝐿 ∃ 𝑔 ∈ 𝑀 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ℎ ∣ ∃ 𝑖 ∈ 𝑅 ∃ 𝑗 ∈ 𝑆 ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) |
9 |
|
mulsval2lem |
⊢ { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } = { 𝑘 ∣ ∃ 𝑙 ∈ 𝐿 ∃ 𝑚 ∈ 𝑆 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } |
10 |
|
mulsval2lem |
⊢ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } = { 𝑛 ∣ ∃ 𝑜 ∈ 𝑅 ∃ 𝑥 ∈ 𝑀 𝑛 = ( ( ( 𝑜 ·s 𝐵 ) +s ( 𝐴 ·s 𝑥 ) ) -s ( 𝑜 ·s 𝑥 ) ) } |
11 |
9 10
|
uneq12i |
⊢ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) = ( { 𝑘 ∣ ∃ 𝑙 ∈ 𝐿 ∃ 𝑚 ∈ 𝑆 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑜 ∈ 𝑅 ∃ 𝑥 ∈ 𝑀 𝑛 = ( ( ( 𝑜 ·s 𝐵 ) +s ( 𝐴 ·s 𝑥 ) ) -s ( 𝑜 ·s 𝑥 ) ) } ) |
12 |
8 11
|
oveq12i |
⊢ ( ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) = ( ( { 𝑒 ∣ ∃ 𝑓 ∈ 𝐿 ∃ 𝑔 ∈ 𝑀 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ℎ ∣ ∃ 𝑖 ∈ 𝑅 ∃ 𝑗 ∈ 𝑆 ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) |s ( { 𝑘 ∣ ∃ 𝑙 ∈ 𝐿 ∃ 𝑚 ∈ 𝑆 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑜 ∈ 𝑅 ∃ 𝑥 ∈ 𝑀 𝑛 = ( ( ( 𝑜 ·s 𝐵 ) +s ( 𝐴 ·s 𝑥 ) ) -s ( 𝑜 ·s 𝑥 ) ) } ) ) |
13 |
5 12
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ) |