Step |
Hyp |
Ref |
Expression |
1 |
|
mulsunif2.1 |
⊢ ( 𝜑 → 𝐿 <<s 𝑅 ) |
2 |
|
mulsunif2.2 |
⊢ ( 𝜑 → 𝑀 <<s 𝑆 ) |
3 |
|
mulsunif2.3 |
⊢ ( 𝜑 → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
4 |
|
mulsunif2.4 |
⊢ ( 𝜑 → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
5 |
1 2 3 4
|
mulsunif2lem |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑒 ∣ ∃ 𝑖 ∈ 𝐿 ∃ 𝑗 ∈ 𝑀 𝑒 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) } ∪ { 𝑓 ∣ ∃ 𝑘 ∈ 𝑅 ∃ 𝑙 ∈ 𝑆 𝑓 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) } ) |s ( { 𝑔 ∣ ∃ 𝑚 ∈ 𝐿 ∃ 𝑛 ∈ 𝑆 𝑔 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) } ∪ { ℎ ∣ ∃ 𝑜 ∈ 𝑅 ∃ 𝑥 ∈ 𝑀 ℎ = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) } ) ) ) |
6 |
|
eqeq1 |
⊢ ( 𝑒 = 𝑎 → ( 𝑒 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) ↔ 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) ) ) |
7 |
6
|
2rexbidv |
⊢ ( 𝑒 = 𝑎 → ( ∃ 𝑖 ∈ 𝐿 ∃ 𝑗 ∈ 𝑀 𝑒 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) ↔ ∃ 𝑖 ∈ 𝐿 ∃ 𝑗 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑖 = 𝑝 → ( 𝐴 -s 𝑖 ) = ( 𝐴 -s 𝑝 ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝑖 = 𝑝 → ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) = ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑗 ) ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝑖 = 𝑝 → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑗 ) ) ) ) |
11 |
10
|
eqeq2d |
⊢ ( 𝑖 = 𝑝 → ( 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) ↔ 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑗 ) ) ) ) ) |
12 |
|
oveq2 |
⊢ ( 𝑗 = 𝑞 → ( 𝐵 -s 𝑗 ) = ( 𝐵 -s 𝑞 ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑗 = 𝑞 → ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑗 ) ) = ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑗 = 𝑞 → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑗 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) ) |
15 |
14
|
eqeq2d |
⊢ ( 𝑗 = 𝑞 → ( 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑗 ) ) ) ↔ 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) ) ) |
16 |
11 15
|
cbvrex2vw |
⊢ ( ∃ 𝑖 ∈ 𝐿 ∃ 𝑗 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) ↔ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) ) |
17 |
7 16
|
bitrdi |
⊢ ( 𝑒 = 𝑎 → ( ∃ 𝑖 ∈ 𝐿 ∃ 𝑗 ∈ 𝑀 𝑒 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) ↔ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) ) ) |
18 |
17
|
cbvabv |
⊢ { 𝑒 ∣ ∃ 𝑖 ∈ 𝐿 ∃ 𝑗 ∈ 𝑀 𝑒 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) } = { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) } |
19 |
|
eqeq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ↔ 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ) ) |
20 |
19
|
2rexbidv |
⊢ ( 𝑓 = 𝑏 → ( ∃ 𝑘 ∈ 𝑅 ∃ 𝑙 ∈ 𝑆 𝑓 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ↔ ∃ 𝑘 ∈ 𝑅 ∃ 𝑙 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ) ) |
21 |
|
oveq1 |
⊢ ( 𝑘 = 𝑟 → ( 𝑘 -s 𝐴 ) = ( 𝑟 -s 𝐴 ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝑘 = 𝑟 → ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) = ( ( 𝑟 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑘 = 𝑟 → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑘 = 𝑟 → ( 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ↔ 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ) ) |
25 |
|
oveq1 |
⊢ ( 𝑙 = 𝑠 → ( 𝑙 -s 𝐵 ) = ( 𝑠 -s 𝐵 ) ) |
26 |
25
|
oveq2d |
⊢ ( 𝑙 = 𝑠 → ( ( 𝑟 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) = ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) |
27 |
26
|
oveq2d |
⊢ ( 𝑙 = 𝑠 → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) ) |
28 |
27
|
eqeq2d |
⊢ ( 𝑙 = 𝑠 → ( 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ↔ 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) ) ) |
29 |
24 28
|
cbvrex2vw |
⊢ ( ∃ 𝑘 ∈ 𝑅 ∃ 𝑙 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) ) |
30 |
20 29
|
bitrdi |
⊢ ( 𝑓 = 𝑏 → ( ∃ 𝑘 ∈ 𝑅 ∃ 𝑙 ∈ 𝑆 𝑓 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) ) ) |
31 |
30
|
cbvabv |
⊢ { 𝑓 ∣ ∃ 𝑘 ∈ 𝑅 ∃ 𝑙 ∈ 𝑆 𝑓 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) } = { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) } |
32 |
18 31
|
uneq12i |
⊢ ( { 𝑒 ∣ ∃ 𝑖 ∈ 𝐿 ∃ 𝑗 ∈ 𝑀 𝑒 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) } ∪ { 𝑓 ∣ ∃ 𝑘 ∈ 𝑅 ∃ 𝑙 ∈ 𝑆 𝑓 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) } ) = ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) } ) |
33 |
|
eqeq1 |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) ↔ 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) ) ) |
34 |
33
|
2rexbidv |
⊢ ( 𝑔 = 𝑐 → ( ∃ 𝑚 ∈ 𝐿 ∃ 𝑛 ∈ 𝑆 𝑔 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) ↔ ∃ 𝑚 ∈ 𝐿 ∃ 𝑛 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) ) ) |
35 |
|
oveq2 |
⊢ ( 𝑚 = 𝑡 → ( 𝐴 -s 𝑚 ) = ( 𝐴 -s 𝑡 ) ) |
36 |
35
|
oveq1d |
⊢ ( 𝑚 = 𝑡 → ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) = ( ( 𝐴 -s 𝑡 ) ·s ( 𝑛 -s 𝐵 ) ) ) |
37 |
36
|
oveq2d |
⊢ ( 𝑚 = 𝑡 → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑛 -s 𝐵 ) ) ) ) |
38 |
37
|
eqeq2d |
⊢ ( 𝑚 = 𝑡 → ( 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) ↔ 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑛 -s 𝐵 ) ) ) ) ) |
39 |
|
oveq1 |
⊢ ( 𝑛 = 𝑢 → ( 𝑛 -s 𝐵 ) = ( 𝑢 -s 𝐵 ) ) |
40 |
39
|
oveq2d |
⊢ ( 𝑛 = 𝑢 → ( ( 𝐴 -s 𝑡 ) ·s ( 𝑛 -s 𝐵 ) ) = ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) |
41 |
40
|
oveq2d |
⊢ ( 𝑛 = 𝑢 → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑛 -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) |
42 |
41
|
eqeq2d |
⊢ ( 𝑛 = 𝑢 → ( 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑛 -s 𝐵 ) ) ) ↔ 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ) |
43 |
38 42
|
cbvrex2vw |
⊢ ( ∃ 𝑚 ∈ 𝐿 ∃ 𝑛 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) ↔ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) |
44 |
34 43
|
bitrdi |
⊢ ( 𝑔 = 𝑐 → ( ∃ 𝑚 ∈ 𝐿 ∃ 𝑛 ∈ 𝑆 𝑔 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) ↔ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ) |
45 |
44
|
cbvabv |
⊢ { 𝑔 ∣ ∃ 𝑚 ∈ 𝐿 ∃ 𝑛 ∈ 𝑆 𝑔 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) } = { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } |
46 |
|
eqeq1 |
⊢ ( ℎ = 𝑑 → ( ℎ = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ↔ 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ) ) |
47 |
46
|
2rexbidv |
⊢ ( ℎ = 𝑑 → ( ∃ 𝑜 ∈ 𝑅 ∃ 𝑥 ∈ 𝑀 ℎ = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ↔ ∃ 𝑜 ∈ 𝑅 ∃ 𝑥 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ) ) |
48 |
|
oveq1 |
⊢ ( 𝑜 = 𝑣 → ( 𝑜 -s 𝐴 ) = ( 𝑣 -s 𝐴 ) ) |
49 |
48
|
oveq1d |
⊢ ( 𝑜 = 𝑣 → ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) = ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) |
50 |
49
|
oveq2d |
⊢ ( 𝑜 = 𝑣 → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ) |
51 |
50
|
eqeq2d |
⊢ ( 𝑜 = 𝑣 → ( 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ↔ 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ) ) |
52 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐵 -s 𝑥 ) = ( 𝐵 -s 𝑤 ) ) |
53 |
52
|
oveq2d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) = ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) |
54 |
53
|
oveq2d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) ) |
55 |
54
|
eqeq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ↔ 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) ) ) |
56 |
51 55
|
cbvrex2vw |
⊢ ( ∃ 𝑜 ∈ 𝑅 ∃ 𝑥 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ↔ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) ) |
57 |
47 56
|
bitrdi |
⊢ ( ℎ = 𝑑 → ( ∃ 𝑜 ∈ 𝑅 ∃ 𝑥 ∈ 𝑀 ℎ = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ↔ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) ) ) |
58 |
57
|
cbvabv |
⊢ { ℎ ∣ ∃ 𝑜 ∈ 𝑅 ∃ 𝑥 ∈ 𝑀 ℎ = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) } = { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) } |
59 |
45 58
|
uneq12i |
⊢ ( { 𝑔 ∣ ∃ 𝑚 ∈ 𝐿 ∃ 𝑛 ∈ 𝑆 𝑔 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) } ∪ { ℎ ∣ ∃ 𝑜 ∈ 𝑅 ∃ 𝑥 ∈ 𝑀 ℎ = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) } ) = ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) } ) |
60 |
32 59
|
oveq12i |
⊢ ( ( { 𝑒 ∣ ∃ 𝑖 ∈ 𝐿 ∃ 𝑗 ∈ 𝑀 𝑒 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) } ∪ { 𝑓 ∣ ∃ 𝑘 ∈ 𝑅 ∃ 𝑙 ∈ 𝑆 𝑓 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) } ) |s ( { 𝑔 ∣ ∃ 𝑚 ∈ 𝐿 ∃ 𝑛 ∈ 𝑆 𝑔 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) } ∪ { ℎ ∣ ∃ 𝑜 ∈ 𝑅 ∃ 𝑥 ∈ 𝑀 ℎ = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) } ) ) |
61 |
5 60
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) } ) ) ) |