Metamath Proof Explorer


Theorem mulsunif2

Description: Alternate expression for surreal multiplication. Note from Conway p. 19. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses mulsunif2.1 ( 𝜑𝐿 <<s 𝑅 )
mulsunif2.2 ( 𝜑𝑀 <<s 𝑆 )
mulsunif2.3 ( 𝜑𝐴 = ( 𝐿 |s 𝑅 ) )
mulsunif2.4 ( 𝜑𝐵 = ( 𝑀 |s 𝑆 ) )
Assertion mulsunif2 ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) } ) ) )

Proof

Step Hyp Ref Expression
1 mulsunif2.1 ( 𝜑𝐿 <<s 𝑅 )
2 mulsunif2.2 ( 𝜑𝑀 <<s 𝑆 )
3 mulsunif2.3 ( 𝜑𝐴 = ( 𝐿 |s 𝑅 ) )
4 mulsunif2.4 ( 𝜑𝐵 = ( 𝑀 |s 𝑆 ) )
5 1 2 3 4 mulsunif2lem ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑒 ∣ ∃ 𝑖𝐿𝑗𝑀 𝑒 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) } ∪ { 𝑓 ∣ ∃ 𝑘𝑅𝑙𝑆 𝑓 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) } ) |s ( { 𝑔 ∣ ∃ 𝑚𝐿𝑛𝑆 𝑔 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) } ∪ { ∣ ∃ 𝑜𝑅𝑥𝑀 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) } ) ) )
6 eqeq1 ( 𝑒 = 𝑎 → ( 𝑒 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) ↔ 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) ) )
7 6 2rexbidv ( 𝑒 = 𝑎 → ( ∃ 𝑖𝐿𝑗𝑀 𝑒 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) ↔ ∃ 𝑖𝐿𝑗𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) ) )
8 oveq2 ( 𝑖 = 𝑝 → ( 𝐴 -s 𝑖 ) = ( 𝐴 -s 𝑝 ) )
9 8 oveq1d ( 𝑖 = 𝑝 → ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) = ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑗 ) ) )
10 9 oveq2d ( 𝑖 = 𝑝 → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑗 ) ) ) )
11 10 eqeq2d ( 𝑖 = 𝑝 → ( 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) ↔ 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑗 ) ) ) ) )
12 oveq2 ( 𝑗 = 𝑞 → ( 𝐵 -s 𝑗 ) = ( 𝐵 -s 𝑞 ) )
13 12 oveq2d ( 𝑗 = 𝑞 → ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑗 ) ) = ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) )
14 13 oveq2d ( 𝑗 = 𝑞 → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑗 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) )
15 14 eqeq2d ( 𝑗 = 𝑞 → ( 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑗 ) ) ) ↔ 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) ) )
16 11 15 cbvrex2vw ( ∃ 𝑖𝐿𝑗𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) ↔ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) )
17 7 16 bitrdi ( 𝑒 = 𝑎 → ( ∃ 𝑖𝐿𝑗𝑀 𝑒 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) ↔ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) ) )
18 17 cbvabv { 𝑒 ∣ ∃ 𝑖𝐿𝑗𝑀 𝑒 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) } = { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) }
19 eqeq1 ( 𝑓 = 𝑏 → ( 𝑓 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ↔ 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ) )
20 19 2rexbidv ( 𝑓 = 𝑏 → ( ∃ 𝑘𝑅𝑙𝑆 𝑓 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ↔ ∃ 𝑘𝑅𝑙𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ) )
21 oveq1 ( 𝑘 = 𝑟 → ( 𝑘 -s 𝐴 ) = ( 𝑟 -s 𝐴 ) )
22 21 oveq1d ( 𝑘 = 𝑟 → ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) = ( ( 𝑟 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) )
23 22 oveq2d ( 𝑘 = 𝑟 → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) )
24 23 eqeq2d ( 𝑘 = 𝑟 → ( 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ↔ 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ) )
25 oveq1 ( 𝑙 = 𝑠 → ( 𝑙 -s 𝐵 ) = ( 𝑠 -s 𝐵 ) )
26 25 oveq2d ( 𝑙 = 𝑠 → ( ( 𝑟 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) = ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) )
27 26 oveq2d ( 𝑙 = 𝑠 → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) )
28 27 eqeq2d ( 𝑙 = 𝑠 → ( 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ↔ 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) ) )
29 24 28 cbvrex2vw ( ∃ 𝑘𝑅𝑙𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ↔ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) )
30 20 29 bitrdi ( 𝑓 = 𝑏 → ( ∃ 𝑘𝑅𝑙𝑆 𝑓 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) ↔ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) ) )
31 30 cbvabv { 𝑓 ∣ ∃ 𝑘𝑅𝑙𝑆 𝑓 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) } = { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) }
32 18 31 uneq12i ( { 𝑒 ∣ ∃ 𝑖𝐿𝑗𝑀 𝑒 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) } ∪ { 𝑓 ∣ ∃ 𝑘𝑅𝑙𝑆 𝑓 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) } ) = ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) } )
33 eqeq1 ( 𝑔 = 𝑐 → ( 𝑔 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) ↔ 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) ) )
34 33 2rexbidv ( 𝑔 = 𝑐 → ( ∃ 𝑚𝐿𝑛𝑆 𝑔 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) ↔ ∃ 𝑚𝐿𝑛𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) ) )
35 oveq2 ( 𝑚 = 𝑡 → ( 𝐴 -s 𝑚 ) = ( 𝐴 -s 𝑡 ) )
36 35 oveq1d ( 𝑚 = 𝑡 → ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) = ( ( 𝐴 -s 𝑡 ) ·s ( 𝑛 -s 𝐵 ) ) )
37 36 oveq2d ( 𝑚 = 𝑡 → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑛 -s 𝐵 ) ) ) )
38 37 eqeq2d ( 𝑚 = 𝑡 → ( 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) ↔ 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑛 -s 𝐵 ) ) ) ) )
39 oveq1 ( 𝑛 = 𝑢 → ( 𝑛 -s 𝐵 ) = ( 𝑢 -s 𝐵 ) )
40 39 oveq2d ( 𝑛 = 𝑢 → ( ( 𝐴 -s 𝑡 ) ·s ( 𝑛 -s 𝐵 ) ) = ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) )
41 40 oveq2d ( 𝑛 = 𝑢 → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑛 -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) )
42 41 eqeq2d ( 𝑛 = 𝑢 → ( 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑛 -s 𝐵 ) ) ) ↔ 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
43 38 42 cbvrex2vw ( ∃ 𝑚𝐿𝑛𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) ↔ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) )
44 34 43 bitrdi ( 𝑔 = 𝑐 → ( ∃ 𝑚𝐿𝑛𝑆 𝑔 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) ↔ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
45 44 cbvabv { 𝑔 ∣ ∃ 𝑚𝐿𝑛𝑆 𝑔 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) } = { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) }
46 eqeq1 ( = 𝑑 → ( = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ↔ 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ) )
47 46 2rexbidv ( = 𝑑 → ( ∃ 𝑜𝑅𝑥𝑀 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ↔ ∃ 𝑜𝑅𝑥𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ) )
48 oveq1 ( 𝑜 = 𝑣 → ( 𝑜 -s 𝐴 ) = ( 𝑣 -s 𝐴 ) )
49 48 oveq1d ( 𝑜 = 𝑣 → ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) = ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) )
50 49 oveq2d ( 𝑜 = 𝑣 → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) )
51 50 eqeq2d ( 𝑜 = 𝑣 → ( 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ↔ 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ) )
52 oveq2 ( 𝑥 = 𝑤 → ( 𝐵 -s 𝑥 ) = ( 𝐵 -s 𝑤 ) )
53 52 oveq2d ( 𝑥 = 𝑤 → ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) = ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) )
54 53 oveq2d ( 𝑥 = 𝑤 → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) )
55 54 eqeq2d ( 𝑥 = 𝑤 → ( 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ↔ 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) ) )
56 51 55 cbvrex2vw ( ∃ 𝑜𝑅𝑥𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ↔ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) )
57 47 56 bitrdi ( = 𝑑 → ( ∃ 𝑜𝑅𝑥𝑀 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) ↔ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) ) )
58 57 cbvabv { ∣ ∃ 𝑜𝑅𝑥𝑀 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) } = { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) }
59 45 58 uneq12i ( { 𝑔 ∣ ∃ 𝑚𝐿𝑛𝑆 𝑔 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) } ∪ { ∣ ∃ 𝑜𝑅𝑥𝑀 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) } ) = ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) } )
60 32 59 oveq12i ( ( { 𝑒 ∣ ∃ 𝑖𝐿𝑗𝑀 𝑒 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑖 ) ·s ( 𝐵 -s 𝑗 ) ) ) } ∪ { 𝑓 ∣ ∃ 𝑘𝑅𝑙𝑆 𝑓 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑘 -s 𝐴 ) ·s ( 𝑙 -s 𝐵 ) ) ) } ) |s ( { 𝑔 ∣ ∃ 𝑚𝐿𝑛𝑆 𝑔 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑚 ) ·s ( 𝑛 -s 𝐵 ) ) ) } ∪ { ∣ ∃ 𝑜𝑅𝑥𝑀 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑜 -s 𝐴 ) ·s ( 𝐵 -s 𝑥 ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) } ) )
61 5 60 eqtrdi ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) } ) ) )