| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulsunif2.1 |
⊢ ( 𝜑 → 𝐿 <<s 𝑅 ) |
| 2 |
|
mulsunif2.2 |
⊢ ( 𝜑 → 𝑀 <<s 𝑆 ) |
| 3 |
|
mulsunif2.3 |
⊢ ( 𝜑 → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
| 4 |
|
mulsunif2.4 |
⊢ ( 𝜑 → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
| 5 |
1 2 3 4
|
mulsunif |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ) |
| 6 |
1
|
scutcld |
⊢ ( 𝜑 → ( 𝐿 |s 𝑅 ) ∈ No ) |
| 7 |
3 6
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 8 |
2
|
scutcld |
⊢ ( 𝜑 → ( 𝑀 |s 𝑆 ) ∈ No ) |
| 9 |
4 8
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 10 |
7 9
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 12 |
|
ssltss1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ⊆ No ) |
| 13 |
1 12
|
syl |
⊢ ( 𝜑 → 𝐿 ⊆ No ) |
| 14 |
13
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐿 ) → 𝑝 ∈ No ) |
| 15 |
14
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑝 ∈ No ) |
| 16 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐵 ∈ No ) |
| 17 |
15 16
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝑝 ·s 𝐵 ) ∈ No ) |
| 18 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐴 ∈ No ) |
| 19 |
|
ssltss1 |
⊢ ( 𝑀 <<s 𝑆 → 𝑀 ⊆ No ) |
| 20 |
2 19
|
syl |
⊢ ( 𝜑 → 𝑀 ⊆ No ) |
| 21 |
20
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑀 ) → 𝑞 ∈ No ) |
| 22 |
21
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑞 ∈ No ) |
| 23 |
18 22
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝑞 ) ∈ No ) |
| 24 |
15 22
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝑝 ·s 𝑞 ) ∈ No ) |
| 25 |
23 24
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No ) |
| 26 |
11 17 25
|
subsubs4d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝑝 ·s 𝐵 ) ) -s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) ) |
| 27 |
26
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝑝 ·s 𝐵 ) ) -s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) ) ) |
| 28 |
17 25
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ∈ No ) |
| 29 |
11 28
|
nncansd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) ) = ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 30 |
27 29
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝑝 ·s 𝐵 ) ) -s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) = ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 31 |
18 15
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝐴 -s 𝑝 ) ∈ No ) |
| 32 |
31 16 22
|
subsdid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) = ( ( ( 𝐴 -s 𝑝 ) ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s 𝑞 ) ) ) |
| 33 |
18 15 16
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 -s 𝑝 ) ·s 𝐵 ) = ( ( 𝐴 ·s 𝐵 ) -s ( 𝑝 ·s 𝐵 ) ) ) |
| 34 |
18 15 22
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 -s 𝑝 ) ·s 𝑞 ) = ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 35 |
33 34
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( 𝐴 -s 𝑝 ) ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s 𝑞 ) ) = ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝑝 ·s 𝐵 ) ) -s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 36 |
32 35
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) = ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝑝 ·s 𝐵 ) ) -s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 37 |
36
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝑝 ·s 𝐵 ) ) -s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) ) |
| 38 |
17 23 24
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) = ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 39 |
30 37 38
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) ) |
| 40 |
39
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) ) ) |
| 41 |
40
|
2rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) ) ) |
| 42 |
41
|
abbidv |
⊢ ( 𝜑 → { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } = { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) } ) |
| 43 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 44 |
|
ssltss2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ⊆ No ) |
| 45 |
1 44
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ No ) |
| 46 |
45
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝑟 ∈ No ) |
| 47 |
46
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑟 ∈ No ) |
| 48 |
|
ssltss2 |
⊢ ( 𝑀 <<s 𝑆 → 𝑆 ⊆ No ) |
| 49 |
2 48
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ No ) |
| 50 |
49
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ No ) |
| 51 |
50
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑠 ∈ No ) |
| 52 |
47 51
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑟 ·s 𝑠 ) ∈ No ) |
| 53 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐴 ∈ No ) |
| 54 |
53 51
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝑠 ) ∈ No ) |
| 55 |
52 54
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ∈ No ) |
| 56 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐵 ∈ No ) |
| 57 |
47 56
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑟 ·s 𝐵 ) ∈ No ) |
| 58 |
57 43
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ∈ No ) |
| 59 |
43 55 58
|
subsubs2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) -s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) ) ) |
| 60 |
43 58 55
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) -s ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) ) ) |
| 61 |
|
pncan3s |
⊢ ( ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( 𝑟 ·s 𝐵 ) ∈ No ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) = ( 𝑟 ·s 𝐵 ) ) |
| 62 |
43 57 61
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) = ( 𝑟 ·s 𝐵 ) ) |
| 63 |
62
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) -s ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) = ( ( 𝑟 ·s 𝐵 ) -s ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) ) |
| 64 |
59 60 63
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) -s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) ) = ( ( 𝑟 ·s 𝐵 ) -s ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) ) |
| 65 |
47 53
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑟 -s 𝐴 ) ∈ No ) |
| 66 |
65 51 56
|
subsdid |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) = ( ( ( 𝑟 -s 𝐴 ) ·s 𝑠 ) -s ( ( 𝑟 -s 𝐴 ) ·s 𝐵 ) ) ) |
| 67 |
47 53 51
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 -s 𝐴 ) ·s 𝑠 ) = ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) |
| 68 |
47 53 56
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 -s 𝐴 ) ·s 𝐵 ) = ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) |
| 69 |
67 68
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 -s 𝐴 ) ·s 𝑠 ) -s ( ( 𝑟 -s 𝐴 ) ·s 𝐵 ) ) = ( ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) -s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) ) |
| 70 |
66 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) = ( ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) -s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) ) |
| 71 |
70
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) -s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) ) ) |
| 72 |
57 54 52
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) = ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 73 |
57 52 54
|
subsubs2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 ·s 𝐵 ) -s ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) = ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 74 |
72 73
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) = ( ( 𝑟 ·s 𝐵 ) -s ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) ) |
| 75 |
64 71 74
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) ) |
| 76 |
75
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ↔ 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) ) ) |
| 77 |
76
|
2rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) ) ) |
| 78 |
77
|
abbidv |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } = { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) } ) |
| 79 |
42 78
|
uneq12d |
⊢ ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) = ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) } ) ) |
| 80 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐴 ∈ No ) |
| 81 |
49
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → 𝑢 ∈ No ) |
| 82 |
81
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑢 ∈ No ) |
| 83 |
80 82
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝑢 ) ∈ No ) |
| 84 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 85 |
83 84
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) ∈ No ) |
| 86 |
13
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐿 ) → 𝑡 ∈ No ) |
| 87 |
86
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑡 ∈ No ) |
| 88 |
87 82
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑡 ·s 𝑢 ) ∈ No ) |
| 89 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐵 ∈ No ) |
| 90 |
87 89
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑡 ·s 𝐵 ) ∈ No ) |
| 91 |
85 88 90
|
subsubs2d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ) = ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
| 92 |
90 88
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No ) |
| 93 |
83 92 84
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) -s ( 𝐴 ·s 𝐵 ) ) = ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
| 94 |
91 93
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ) = ( ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) -s ( 𝐴 ·s 𝐵 ) ) ) |
| 95 |
94
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) -s ( 𝐴 ·s 𝐵 ) ) ) ) |
| 96 |
83 92
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ No ) |
| 97 |
|
pncan3s |
⊢ ( ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ No ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) -s ( 𝐴 ·s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
| 98 |
84 96 97
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) -s ( 𝐴 ·s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
| 99 |
95 98
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ) ) = ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
| 100 |
82 89
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑢 -s 𝐵 ) ∈ No ) |
| 101 |
80 87 100
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) = ( ( 𝐴 ·s ( 𝑢 -s 𝐵 ) ) -s ( 𝑡 ·s ( 𝑢 -s 𝐵 ) ) ) ) |
| 102 |
80 82 89
|
subsdid |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝐴 ·s ( 𝑢 -s 𝐵 ) ) = ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) ) |
| 103 |
87 82 89
|
subsdid |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑡 ·s ( 𝑢 -s 𝐵 ) ) = ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ) |
| 104 |
102 103
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 ·s ( 𝑢 -s 𝐵 ) ) -s ( 𝑡 ·s ( 𝑢 -s 𝐵 ) ) ) = ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ) ) |
| 105 |
101 104
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) = ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ) ) |
| 106 |
105
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ) ) ) |
| 107 |
90 83
|
addscomd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) = ( ( 𝐴 ·s 𝑢 ) +s ( 𝑡 ·s 𝐵 ) ) ) |
| 108 |
107
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) = ( ( ( 𝐴 ·s 𝑢 ) +s ( 𝑡 ·s 𝐵 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) |
| 109 |
83 90 88
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝐴 ·s 𝑢 ) +s ( 𝑡 ·s 𝐵 ) ) -s ( 𝑡 ·s 𝑢 ) ) = ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
| 110 |
108 109
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) = ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
| 111 |
99 106 110
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) |
| 112 |
111
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ) |
| 113 |
112
|
2rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ) |
| 114 |
113
|
abbidv |
⊢ ( 𝜑 → { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } = { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ) |
| 115 |
45
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑅 ) → 𝑣 ∈ No ) |
| 116 |
115
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑣 ∈ No ) |
| 117 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝐵 ∈ No ) |
| 118 |
116 117
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑣 ·s 𝐵 ) ∈ No ) |
| 119 |
20
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑀 ) → 𝑤 ∈ No ) |
| 120 |
119
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑤 ∈ No ) |
| 121 |
116 120
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑣 ·s 𝑤 ) ∈ No ) |
| 122 |
118 121
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No ) |
| 123 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 124 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝐴 ∈ No ) |
| 125 |
124 120
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝑤 ) ∈ No ) |
| 126 |
122 123 125
|
subsubs2d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) -s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( ( 𝐴 ·s 𝑤 ) -s ( 𝐴 ·s 𝐵 ) ) ) ) |
| 127 |
122 125 123
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝐴 ·s 𝐵 ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( ( 𝐴 ·s 𝑤 ) -s ( 𝐴 ·s 𝐵 ) ) ) ) |
| 128 |
126 127
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) -s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) ) = ( ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝐴 ·s 𝐵 ) ) ) |
| 129 |
128
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) -s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝐴 ·s 𝐵 ) ) ) ) |
| 130 |
122 125
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ∈ No ) |
| 131 |
|
pncan3s |
⊢ ( ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ∈ No ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝐴 ·s 𝐵 ) ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ) |
| 132 |
123 130 131
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝐴 ·s 𝐵 ) ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ) |
| 133 |
129 132
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) -s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ) |
| 134 |
117 120
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝐵 -s 𝑤 ) ∈ No ) |
| 135 |
116 124 134
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) = ( ( 𝑣 ·s ( 𝐵 -s 𝑤 ) ) -s ( 𝐴 ·s ( 𝐵 -s 𝑤 ) ) ) ) |
| 136 |
116 117 120
|
subsdid |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑣 ·s ( 𝐵 -s 𝑤 ) ) = ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) ) |
| 137 |
124 117 120
|
subsdid |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝐴 ·s ( 𝐵 -s 𝑤 ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) ) |
| 138 |
136 137
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝑣 ·s ( 𝐵 -s 𝑤 ) ) -s ( 𝐴 ·s ( 𝐵 -s 𝑤 ) ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) -s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) ) ) |
| 139 |
135 138
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) -s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) ) ) |
| 140 |
139
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) -s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) ) ) ) |
| 141 |
118 125 121
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ) |
| 142 |
133 140 141
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) ) |
| 143 |
142
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) ) ) |
| 144 |
143
|
2rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) ) ) |
| 145 |
144
|
abbidv |
⊢ ( 𝜑 → { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } = { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) } ) |
| 146 |
114 145
|
uneq12d |
⊢ ( 𝜑 → ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) = ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) } ) ) |
| 147 |
79 146
|
oveq12d |
⊢ ( 𝜑 → ( ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) } ) ) ) |
| 148 |
5 147
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) } ) ) ) |