Step |
Hyp |
Ref |
Expression |
1 |
|
mulsunif2.1 |
⊢ ( 𝜑 → 𝐿 <<s 𝑅 ) |
2 |
|
mulsunif2.2 |
⊢ ( 𝜑 → 𝑀 <<s 𝑆 ) |
3 |
|
mulsunif2.3 |
⊢ ( 𝜑 → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
4 |
|
mulsunif2.4 |
⊢ ( 𝜑 → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
5 |
1 2 3 4
|
mulsunif |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ) |
6 |
1
|
scutcld |
⊢ ( 𝜑 → ( 𝐿 |s 𝑅 ) ∈ No ) |
7 |
3 6
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
8 |
2
|
scutcld |
⊢ ( 𝜑 → ( 𝑀 |s 𝑆 ) ∈ No ) |
9 |
4 8
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
10 |
7 9
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
12 |
|
ssltss1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ⊆ No ) |
13 |
1 12
|
syl |
⊢ ( 𝜑 → 𝐿 ⊆ No ) |
14 |
13
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐿 ) → 𝑝 ∈ No ) |
15 |
14
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑝 ∈ No ) |
16 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐵 ∈ No ) |
17 |
15 16
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝑝 ·s 𝐵 ) ∈ No ) |
18 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐴 ∈ No ) |
19 |
|
ssltss1 |
⊢ ( 𝑀 <<s 𝑆 → 𝑀 ⊆ No ) |
20 |
2 19
|
syl |
⊢ ( 𝜑 → 𝑀 ⊆ No ) |
21 |
20
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑀 ) → 𝑞 ∈ No ) |
22 |
21
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑞 ∈ No ) |
23 |
18 22
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝑞 ) ∈ No ) |
24 |
15 22
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝑝 ·s 𝑞 ) ∈ No ) |
25 |
23 24
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No ) |
26 |
11 17 25
|
subsubs4d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝑝 ·s 𝐵 ) ) -s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) ) |
27 |
26
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝑝 ·s 𝐵 ) ) -s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) ) ) |
28 |
17 25
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ∈ No ) |
29 |
11 28
|
nncansd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) ) = ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
30 |
27 29
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝑝 ·s 𝐵 ) ) -s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) = ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
31 |
18 15
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝐴 -s 𝑝 ) ∈ No ) |
32 |
31 16 22
|
subsdid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) = ( ( ( 𝐴 -s 𝑝 ) ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s 𝑞 ) ) ) |
33 |
18 15 16
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 -s 𝑝 ) ·s 𝐵 ) = ( ( 𝐴 ·s 𝐵 ) -s ( 𝑝 ·s 𝐵 ) ) ) |
34 |
18 15 22
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 -s 𝑝 ) ·s 𝑞 ) = ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) |
35 |
33 34
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( 𝐴 -s 𝑝 ) ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s 𝑞 ) ) = ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝑝 ·s 𝐵 ) ) -s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
36 |
32 35
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) = ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝑝 ·s 𝐵 ) ) -s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
37 |
36
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝑝 ·s 𝐵 ) ) -s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) ) |
38 |
17 23 24
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) = ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
39 |
30 37 38
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) ) |
40 |
39
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) ) ) |
41 |
40
|
2rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) ) ) |
42 |
41
|
abbidv |
⊢ ( 𝜑 → { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } = { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) } ) |
43 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
44 |
|
ssltss2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ⊆ No ) |
45 |
1 44
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ No ) |
46 |
45
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝑟 ∈ No ) |
47 |
46
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑟 ∈ No ) |
48 |
|
ssltss2 |
⊢ ( 𝑀 <<s 𝑆 → 𝑆 ⊆ No ) |
49 |
2 48
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ No ) |
50 |
49
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ No ) |
51 |
50
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑠 ∈ No ) |
52 |
47 51
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑟 ·s 𝑠 ) ∈ No ) |
53 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐴 ∈ No ) |
54 |
53 51
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝑠 ) ∈ No ) |
55 |
52 54
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ∈ No ) |
56 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐵 ∈ No ) |
57 |
47 56
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑟 ·s 𝐵 ) ∈ No ) |
58 |
57 43
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ∈ No ) |
59 |
43 55 58
|
subsubs2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) -s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) ) ) |
60 |
43 58 55
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) -s ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) ) ) |
61 |
|
pncan3s |
⊢ ( ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( 𝑟 ·s 𝐵 ) ∈ No ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) = ( 𝑟 ·s 𝐵 ) ) |
62 |
43 57 61
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) = ( 𝑟 ·s 𝐵 ) ) |
63 |
62
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) -s ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) = ( ( 𝑟 ·s 𝐵 ) -s ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) ) |
64 |
59 60 63
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) -s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) ) = ( ( 𝑟 ·s 𝐵 ) -s ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) ) |
65 |
47 53
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑟 -s 𝐴 ) ∈ No ) |
66 |
65 51 56
|
subsdid |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) = ( ( ( 𝑟 -s 𝐴 ) ·s 𝑠 ) -s ( ( 𝑟 -s 𝐴 ) ·s 𝐵 ) ) ) |
67 |
47 53 51
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 -s 𝐴 ) ·s 𝑠 ) = ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) |
68 |
47 53 56
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 -s 𝐴 ) ·s 𝐵 ) = ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) |
69 |
67 68
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 -s 𝐴 ) ·s 𝑠 ) -s ( ( 𝑟 -s 𝐴 ) ·s 𝐵 ) ) = ( ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) -s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) ) |
70 |
66 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) = ( ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) -s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) ) |
71 |
70
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) -s ( ( 𝑟 ·s 𝐵 ) -s ( 𝐴 ·s 𝐵 ) ) ) ) ) |
72 |
57 54 52
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) = ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
73 |
57 52 54
|
subsubs2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 ·s 𝐵 ) -s ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) = ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
74 |
72 73
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) = ( ( 𝑟 ·s 𝐵 ) -s ( ( 𝑟 ·s 𝑠 ) -s ( 𝐴 ·s 𝑠 ) ) ) ) |
75 |
64 71 74
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) ) |
76 |
75
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ↔ 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) ) ) |
77 |
76
|
2rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) ) ) |
78 |
77
|
abbidv |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } = { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) } ) |
79 |
42 78
|
uneq12d |
⊢ ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) = ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) } ) ) |
80 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐴 ∈ No ) |
81 |
49
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → 𝑢 ∈ No ) |
82 |
81
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑢 ∈ No ) |
83 |
80 82
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝑢 ) ∈ No ) |
84 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
85 |
83 84
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) ∈ No ) |
86 |
13
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐿 ) → 𝑡 ∈ No ) |
87 |
86
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑡 ∈ No ) |
88 |
87 82
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑡 ·s 𝑢 ) ∈ No ) |
89 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐵 ∈ No ) |
90 |
87 89
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑡 ·s 𝐵 ) ∈ No ) |
91 |
85 88 90
|
subsubs2d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ) = ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
92 |
90 88
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No ) |
93 |
83 92 84
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) -s ( 𝐴 ·s 𝐵 ) ) = ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
94 |
91 93
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ) = ( ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) -s ( 𝐴 ·s 𝐵 ) ) ) |
95 |
94
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) -s ( 𝐴 ·s 𝐵 ) ) ) ) |
96 |
83 92
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ No ) |
97 |
|
pncan3s |
⊢ ( ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ No ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) -s ( 𝐴 ·s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
98 |
84 96 97
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) -s ( 𝐴 ·s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
99 |
95 98
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ) ) = ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
100 |
82 89
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑢 -s 𝐵 ) ∈ No ) |
101 |
80 87 100
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) = ( ( 𝐴 ·s ( 𝑢 -s 𝐵 ) ) -s ( 𝑡 ·s ( 𝑢 -s 𝐵 ) ) ) ) |
102 |
80 82 89
|
subsdid |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝐴 ·s ( 𝑢 -s 𝐵 ) ) = ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) ) |
103 |
87 82 89
|
subsdid |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑡 ·s ( 𝑢 -s 𝐵 ) ) = ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ) |
104 |
102 103
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 ·s ( 𝑢 -s 𝐵 ) ) -s ( 𝑡 ·s ( 𝑢 -s 𝐵 ) ) ) = ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ) ) |
105 |
101 104
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) = ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ) ) |
106 |
105
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) -s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ) ) ) |
107 |
90 83
|
addscomd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) = ( ( 𝐴 ·s 𝑢 ) +s ( 𝑡 ·s 𝐵 ) ) ) |
108 |
107
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) = ( ( ( 𝐴 ·s 𝑢 ) +s ( 𝑡 ·s 𝐵 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) |
109 |
83 90 88
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝐴 ·s 𝑢 ) +s ( 𝑡 ·s 𝐵 ) ) -s ( 𝑡 ·s 𝑢 ) ) = ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
110 |
108 109
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) = ( ( 𝐴 ·s 𝑢 ) +s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
111 |
99 106 110
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) |
112 |
111
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ) |
113 |
112
|
2rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ) |
114 |
113
|
abbidv |
⊢ ( 𝜑 → { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } = { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ) |
115 |
45
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑅 ) → 𝑣 ∈ No ) |
116 |
115
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑣 ∈ No ) |
117 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝐵 ∈ No ) |
118 |
116 117
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑣 ·s 𝐵 ) ∈ No ) |
119 |
20
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑀 ) → 𝑤 ∈ No ) |
120 |
119
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑤 ∈ No ) |
121 |
116 120
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑣 ·s 𝑤 ) ∈ No ) |
122 |
118 121
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No ) |
123 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
124 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝐴 ∈ No ) |
125 |
124 120
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝑤 ) ∈ No ) |
126 |
122 123 125
|
subsubs2d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) -s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( ( 𝐴 ·s 𝑤 ) -s ( 𝐴 ·s 𝐵 ) ) ) ) |
127 |
122 125 123
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝐴 ·s 𝐵 ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( ( 𝐴 ·s 𝑤 ) -s ( 𝐴 ·s 𝐵 ) ) ) ) |
128 |
126 127
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) -s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) ) = ( ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝐴 ·s 𝐵 ) ) ) |
129 |
128
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) -s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝐴 ·s 𝐵 ) ) ) ) |
130 |
122 125
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ∈ No ) |
131 |
|
pncan3s |
⊢ ( ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ∈ No ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝐴 ·s 𝐵 ) ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ) |
132 |
123 130 131
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝐴 ·s 𝐵 ) ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ) |
133 |
129 132
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) -s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ) |
134 |
117 120
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝐵 -s 𝑤 ) ∈ No ) |
135 |
116 124 134
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) = ( ( 𝑣 ·s ( 𝐵 -s 𝑤 ) ) -s ( 𝐴 ·s ( 𝐵 -s 𝑤 ) ) ) ) |
136 |
116 117 120
|
subsdid |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑣 ·s ( 𝐵 -s 𝑤 ) ) = ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) ) |
137 |
124 117 120
|
subsdid |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝐴 ·s ( 𝐵 -s 𝑤 ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) ) |
138 |
136 137
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝑣 ·s ( 𝐵 -s 𝑤 ) ) -s ( 𝐴 ·s ( 𝐵 -s 𝑤 ) ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) -s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) ) ) |
139 |
135 138
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) -s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) ) ) |
140 |
139
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) -s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) ) ) ) |
141 |
118 125 121
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ) |
142 |
133 140 141
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) ) |
143 |
142
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) ) ) |
144 |
143
|
2rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) ) ) |
145 |
144
|
abbidv |
⊢ ( 𝜑 → { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } = { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) } ) |
146 |
114 145
|
uneq12d |
⊢ ( 𝜑 → ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) = ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) } ) ) |
147 |
79 146
|
oveq12d |
⊢ ( 𝜑 → ( ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) } ) ) ) |
148 |
5 147
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑝 ) ·s ( 𝐵 -s 𝑞 ) ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑟 -s 𝐴 ) ·s ( 𝑠 -s 𝐵 ) ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑣 -s 𝐴 ) ·s ( 𝐵 -s 𝑤 ) ) ) } ) ) ) |