Metamath Proof Explorer


Theorem mulsuniflem

Description: Lemma for mulsunif . State the theorem with some extra distinct variable conditions. (Contributed by Scott Fenton, 8-Mar-2025)

Ref Expression
Hypotheses mulsuniflem.1 ( 𝜑𝐿 <<s 𝑅 )
mulsuniflem.2 ( 𝜑𝑀 <<s 𝑆 )
mulsuniflem.3 ( 𝜑𝐴 = ( 𝐿 |s 𝑅 ) )
mulsuniflem.4 ( 𝜑𝐵 = ( 𝑀 |s 𝑆 ) )
Assertion mulsuniflem ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )

Proof

Step Hyp Ref Expression
1 mulsuniflem.1 ( 𝜑𝐿 <<s 𝑅 )
2 mulsuniflem.2 ( 𝜑𝑀 <<s 𝑆 )
3 mulsuniflem.3 ( 𝜑𝐴 = ( 𝐿 |s 𝑅 ) )
4 mulsuniflem.4 ( 𝜑𝐵 = ( 𝑀 |s 𝑆 ) )
5 1 scutcld ( 𝜑 → ( 𝐿 |s 𝑅 ) ∈ No )
6 3 5 eqeltrd ( 𝜑𝐴 No )
7 2 scutcld ( 𝜑 → ( 𝑀 |s 𝑆 ) ∈ No )
8 4 7 eqeltrd ( 𝜑𝐵 No )
9 mulsval ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) |s ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) )
10 6 8 9 syl2anc ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) |s ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) )
11 6 8 mulscut2 ( 𝜑 → ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) <<s ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) )
12 1 3 cofcutr1d ( 𝜑 → ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑝𝐿 𝑓 ≤s 𝑝 )
13 2 4 cofcutr1d ( 𝜑 → ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑞𝑀 𝑔 ≤s 𝑞 )
14 13 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑝𝐿 𝑓 ≤s 𝑝 ) ) → ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑞𝑀 𝑔 ≤s 𝑞 )
15 reeanv ( ∃ 𝑝𝐿𝑞𝑀 ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ↔ ( ∃ 𝑝𝐿 𝑓 ≤s 𝑝 ∧ ∃ 𝑞𝑀 𝑔 ≤s 𝑞 ) )
16 leftssno ( L ‘ 𝐴 ) ⊆ No
17 simprl ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → 𝑓 ∈ ( L ‘ 𝐴 ) )
18 16 17 sselid ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → 𝑓 No )
19 18 adantrr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → 𝑓 No )
20 8 adantr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → 𝐵 No )
21 19 20 mulscld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( 𝑓 ·s 𝐵 ) ∈ No )
22 6 adantr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → 𝐴 No )
23 leftssno ( L ‘ 𝐵 ) ⊆ No
24 simprr ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → 𝑔 ∈ ( L ‘ 𝐵 ) )
25 23 24 sselid ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → 𝑔 No )
26 25 adantrr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → 𝑔 No )
27 22 26 mulscld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( 𝐴 ·s 𝑔 ) ∈ No )
28 21 27 addscld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) ∈ No )
29 19 26 mulscld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( 𝑓 ·s 𝑔 ) ∈ No )
30 28 29 subscld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ∈ No )
31 30 adantrrr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ∈ No )
32 ssltss1 ( 𝐿 <<s 𝑅𝐿 No )
33 1 32 syl ( 𝜑𝐿 No )
34 33 adantr ( ( 𝜑 ∧ ( 𝑝𝐿𝑞𝑀 ) ) → 𝐿 No )
35 simprl ( ( 𝜑 ∧ ( 𝑝𝐿𝑞𝑀 ) ) → 𝑝𝐿 )
36 34 35 sseldd ( ( 𝜑 ∧ ( 𝑝𝐿𝑞𝑀 ) ) → 𝑝 No )
37 36 adantrl ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → 𝑝 No )
38 37 20 mulscld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( 𝑝 ·s 𝐵 ) ∈ No )
39 38 27 addscld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) ∈ No )
40 37 26 mulscld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( 𝑝 ·s 𝑔 ) ∈ No )
41 39 40 subscld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑝 ·s 𝑔 ) ) ∈ No )
42 41 adantrrr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑝 ·s 𝑔 ) ) ∈ No )
43 ssltss1 ( 𝑀 <<s 𝑆𝑀 No )
44 2 43 syl ( 𝜑𝑀 No )
45 44 adantr ( ( 𝜑 ∧ ( 𝑝𝐿𝑞𝑀 ) ) → 𝑀 No )
46 simprr ( ( 𝜑 ∧ ( 𝑝𝐿𝑞𝑀 ) ) → 𝑞𝑀 )
47 45 46 sseldd ( ( 𝜑 ∧ ( 𝑝𝐿𝑞𝑀 ) ) → 𝑞 No )
48 47 adantrl ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → 𝑞 No )
49 22 48 mulscld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( 𝐴 ·s 𝑞 ) ∈ No )
50 38 49 addscld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) ∈ No )
51 37 48 mulscld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( 𝑝 ·s 𝑞 ) ∈ No )
52 50 51 subscld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No )
53 52 adantrrr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No )
54 18 adantrr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → 𝑓 No )
55 37 adantrrr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → 𝑝 No )
56 25 adantrr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → 𝑔 No )
57 8 adantr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → 𝐵 No )
58 simprrl ( ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) → 𝑓 ≤s 𝑝 )
59 58 adantl ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → 𝑓 ≤s 𝑝 )
60 8 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → 𝐵 No )
61 ssltleft ( 𝐵 No → ( L ‘ 𝐵 ) <<s { 𝐵 } )
62 8 61 syl ( 𝜑 → ( L ‘ 𝐵 ) <<s { 𝐵 } )
63 62 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → ( L ‘ 𝐵 ) <<s { 𝐵 } )
64 snidg ( 𝐵 No 𝐵 ∈ { 𝐵 } )
65 8 64 syl ( 𝜑𝐵 ∈ { 𝐵 } )
66 65 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → 𝐵 ∈ { 𝐵 } )
67 63 24 66 ssltsepcd ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → 𝑔 <s 𝐵 )
68 25 60 67 sltled ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → 𝑔 ≤s 𝐵 )
69 68 adantrr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → 𝑔 ≤s 𝐵 )
70 54 55 56 57 59 69 slemuld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) )
71 21 29 subscld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) ∈ No )
72 38 40 subscld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) ∈ No )
73 71 72 27 sleadd1d ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) ↔ ( ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) ) )
74 73 adantrrr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) ↔ ( ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) ) )
75 70 74 mpbid ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) )
76 21 27 29 addsubsd ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) = ( ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) )
77 76 adantrrr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) = ( ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) )
78 38 27 40 addsubsd ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑝 ·s 𝑔 ) ) = ( ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) )
79 78 adantrrr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑝 ·s 𝑔 ) ) = ( ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) )
80 75 77 79 3brtr4d ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑝 ·s 𝑔 ) ) )
81 6 adantr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → 𝐴 No )
82 48 adantrrr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → 𝑞 No )
83 6 adantr ( ( 𝜑 ∧ ( 𝑝𝐿𝑞𝑀 ) ) → 𝐴 No )
84 scutcut ( 𝐿 <<s 𝑅 → ( ( 𝐿 |s 𝑅 ) ∈ No 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) )
85 1 84 syl ( 𝜑 → ( ( 𝐿 |s 𝑅 ) ∈ No 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) )
86 85 simp2d ( 𝜑𝐿 <<s { ( 𝐿 |s 𝑅 ) } )
87 86 adantr ( ( 𝜑 ∧ ( 𝑝𝐿𝑞𝑀 ) ) → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } )
88 ovex ( 𝐿 |s 𝑅 ) ∈ V
89 88 snid ( 𝐿 |s 𝑅 ) ∈ { ( 𝐿 |s 𝑅 ) }
90 3 89 eqeltrdi ( 𝜑𝐴 ∈ { ( 𝐿 |s 𝑅 ) } )
91 90 adantr ( ( 𝜑 ∧ ( 𝑝𝐿𝑞𝑀 ) ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } )
92 87 35 91 ssltsepcd ( ( 𝜑 ∧ ( 𝑝𝐿𝑞𝑀 ) ) → 𝑝 <s 𝐴 )
93 36 83 92 sltled ( ( 𝜑 ∧ ( 𝑝𝐿𝑞𝑀 ) ) → 𝑝 ≤s 𝐴 )
94 93 adantrl ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → 𝑝 ≤s 𝐴 )
95 94 adantrrr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → 𝑝 ≤s 𝐴 )
96 simprrr ( ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) → 𝑔 ≤s 𝑞 )
97 96 adantl ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → 𝑔 ≤s 𝑞 )
98 55 81 56 82 95 97 slemuld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → ( ( 𝑝 ·s 𝑞 ) -s ( 𝑝 ·s 𝑔 ) ) ≤s ( ( 𝐴 ·s 𝑞 ) -s ( 𝐴 ·s 𝑔 ) ) )
99 51 49 40 27 slesubsub3bd ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( ( 𝑝 ·s 𝑞 ) -s ( 𝑝 ·s 𝑔 ) ) ≤s ( ( 𝐴 ·s 𝑞 ) -s ( 𝐴 ·s 𝑔 ) ) ↔ ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ≤s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) )
100 27 40 subscld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ∈ No )
101 49 51 subscld ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No )
102 100 101 38 sleadd2d ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ≤s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ) ≤s ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) )
103 99 102 bitrd ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( ( 𝑝 ·s 𝑞 ) -s ( 𝑝 ·s 𝑔 ) ) ≤s ( ( 𝐴 ·s 𝑞 ) -s ( 𝐴 ·s 𝑔 ) ) ↔ ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ) ≤s ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) )
104 103 adantrrr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑝 ·s 𝑞 ) -s ( 𝑝 ·s 𝑔 ) ) ≤s ( ( 𝐴 ·s 𝑞 ) -s ( 𝐴 ·s 𝑔 ) ) ↔ ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ) ≤s ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) )
105 98 104 mpbid ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ) ≤s ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) )
106 38 27 40 addsubsassd ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑝 ·s 𝑔 ) ) = ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ) )
107 106 adantrrr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑝 ·s 𝑔 ) ) = ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ) )
108 38 49 51 addsubsassd ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) = ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) )
109 108 adantrrr ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) = ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) )
110 105 107 109 3brtr4d ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑝 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) )
111 31 42 53 80 110 sletrd ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) )
112 111 anassrs ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) ∧ ( ( 𝑝𝐿𝑞𝑀 ) ∧ ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) )
113 112 expr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) ∧ ( 𝑝𝐿𝑞𝑀 ) ) → ( ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) → ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) )
114 113 reximdvva ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → ( ∃ 𝑝𝐿𝑞𝑀 ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) → ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) )
115 114 expcom ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) → ( 𝜑 → ( ∃ 𝑝𝐿𝑞𝑀 ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) → ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) )
116 115 com23 ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) → ( ∃ 𝑝𝐿𝑞𝑀 ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) → ( 𝜑 → ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) )
117 116 imp ( ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ∃ 𝑝𝐿𝑞𝑀 ( 𝑓 ≤s 𝑝𝑔 ≤s 𝑞 ) ) → ( 𝜑 → ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) )
118 15 117 sylan2br ( ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ∃ 𝑝𝐿 𝑓 ≤s 𝑝 ∧ ∃ 𝑞𝑀 𝑔 ≤s 𝑞 ) ) → ( 𝜑 → ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) )
119 118 an4s ( ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑝𝐿 𝑓 ≤s 𝑝 ) ∧ ( 𝑔 ∈ ( L ‘ 𝐵 ) ∧ ∃ 𝑞𝑀 𝑔 ≤s 𝑞 ) ) → ( 𝜑 → ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) )
120 119 impcom ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑝𝐿 𝑓 ≤s 𝑝 ) ∧ ( 𝑔 ∈ ( L ‘ 𝐵 ) ∧ ∃ 𝑞𝑀 𝑔 ≤s 𝑞 ) ) ) → ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) )
121 120 anassrs ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑝𝐿 𝑓 ≤s 𝑝 ) ) ∧ ( 𝑔 ∈ ( L ‘ 𝐵 ) ∧ ∃ 𝑞𝑀 𝑔 ≤s 𝑞 ) ) → ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) )
122 121 expr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑝𝐿 𝑓 ≤s 𝑝 ) ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) → ( ∃ 𝑞𝑀 𝑔 ≤s 𝑞 → ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) )
123 122 ralimdva ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑝𝐿 𝑓 ≤s 𝑝 ) ) → ( ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑞𝑀 𝑔 ≤s 𝑞 → ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) )
124 14 123 mpd ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑝𝐿 𝑓 ≤s 𝑝 ) ) → ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) )
125 124 expr ( ( 𝜑𝑓 ∈ ( L ‘ 𝐴 ) ) → ( ∃ 𝑝𝐿 𝑓 ≤s 𝑝 → ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) )
126 125 ralimdva ( 𝜑 → ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑝𝐿 𝑓 ≤s 𝑝 → ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) )
127 12 126 mpd ( 𝜑 → ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) )
128 eqeq1 ( 𝑎 = 𝑧 → ( 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) )
129 128 2rexbidv ( 𝑎 = 𝑧 → ( ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ∃ 𝑝𝐿𝑞𝑀 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) )
130 129 rexab ( ∃ 𝑧 ∈ { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ↔ ∃ 𝑧 ( ∃ 𝑝𝐿𝑞𝑀 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) )
131 r19.41vv ( ∃ 𝑝𝐿𝑞𝑀 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ( ∃ 𝑝𝐿𝑞𝑀 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) )
132 131 exbii ( ∃ 𝑧𝑝𝐿𝑞𝑀 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ∃ 𝑧 ( ∃ 𝑝𝐿𝑞𝑀 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) )
133 rexcom4 ( ∃ 𝑝𝐿𝑧𝑞𝑀 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ∃ 𝑧𝑝𝐿𝑞𝑀 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) )
134 rexcom4 ( ∃ 𝑞𝑀𝑧 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ∃ 𝑧𝑞𝑀 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) )
135 ovex ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∈ V
136 breq2 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ↔ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) )
137 135 136 ceqsexv ( ∃ 𝑧 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) )
138 137 rexbii ( ∃ 𝑞𝑀𝑧 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ∃ 𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) )
139 134 138 bitr3i ( ∃ 𝑧𝑞𝑀 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ∃ 𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) )
140 139 rexbii ( ∃ 𝑝𝐿𝑧𝑞𝑀 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) )
141 133 140 bitr3i ( ∃ 𝑧𝑝𝐿𝑞𝑀 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) )
142 130 132 141 3bitr2i ( ∃ 𝑧 ∈ { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ↔ ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) )
143 ssun1 { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ⊆ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } )
144 ssrexv ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ⊆ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) → ( ∃ 𝑧 ∈ { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) )
145 143 144 ax-mp ( ∃ 𝑧 ∈ { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 )
146 142 145 sylbir ( ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 )
147 146 2ralimi ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑝𝐿𝑞𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 )
148 127 147 syl ( 𝜑 → ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 )
149 1 3 cofcutr2d ( 𝜑 → ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑟𝑅 𝑟 ≤s 𝑖 )
150 2 4 cofcutr2d ( 𝜑 → ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑠𝑆 𝑠 ≤s 𝑗 )
151 150 adantr ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑟𝑅 𝑟 ≤s 𝑖 ) ) → ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑠𝑆 𝑠 ≤s 𝑗 )
152 reeanv ( ∃ 𝑟𝑅𝑠𝑆 ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ↔ ( ∃ 𝑟𝑅 𝑟 ≤s 𝑖 ∧ ∃ 𝑠𝑆 𝑠 ≤s 𝑗 ) )
153 rightssno ( R ‘ 𝐴 ) ⊆ No
154 simprl ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → 𝑖 ∈ ( R ‘ 𝐴 ) )
155 153 154 sselid ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → 𝑖 No )
156 155 adantrr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → 𝑖 No )
157 8 adantr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → 𝐵 No )
158 156 157 mulscld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( 𝑖 ·s 𝐵 ) ∈ No )
159 6 adantr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → 𝐴 No )
160 rightssno ( R ‘ 𝐵 ) ⊆ No
161 simprr ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → 𝑗 ∈ ( R ‘ 𝐵 ) )
162 160 161 sselid ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → 𝑗 No )
163 162 adantrr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → 𝑗 No )
164 159 163 mulscld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( 𝐴 ·s 𝑗 ) ∈ No )
165 158 164 addscld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) ∈ No )
166 156 163 mulscld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( 𝑖 ·s 𝑗 ) ∈ No )
167 165 166 subscld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ∈ No )
168 167 adantrrr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ∈ No )
169 ssltss2 ( 𝐿 <<s 𝑅𝑅 No )
170 1 169 syl ( 𝜑𝑅 No )
171 170 adantr ( ( 𝜑 ∧ ( 𝑟𝑅𝑠𝑆 ) ) → 𝑅 No )
172 simprl ( ( 𝜑 ∧ ( 𝑟𝑅𝑠𝑆 ) ) → 𝑟𝑅 )
173 171 172 sseldd ( ( 𝜑 ∧ ( 𝑟𝑅𝑠𝑆 ) ) → 𝑟 No )
174 173 adantrl ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → 𝑟 No )
175 174 157 mulscld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( 𝑟 ·s 𝐵 ) ∈ No )
176 175 164 addscld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) ∈ No )
177 174 163 mulscld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( 𝑟 ·s 𝑗 ) ∈ No )
178 176 177 subscld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑟 ·s 𝑗 ) ) ∈ No )
179 178 adantrrr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑟 ·s 𝑗 ) ) ∈ No )
180 ssltss2 ( 𝑀 <<s 𝑆𝑆 No )
181 2 180 syl ( 𝜑𝑆 No )
182 181 adantr ( ( 𝜑 ∧ ( 𝑟𝑅𝑠𝑆 ) ) → 𝑆 No )
183 simprr ( ( 𝜑 ∧ ( 𝑟𝑅𝑠𝑆 ) ) → 𝑠𝑆 )
184 182 183 sseldd ( ( 𝜑 ∧ ( 𝑟𝑅𝑠𝑆 ) ) → 𝑠 No )
185 184 adantrl ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → 𝑠 No )
186 159 185 mulscld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( 𝐴 ·s 𝑠 ) ∈ No )
187 175 186 addscld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) ∈ No )
188 173 184 mulscld ( ( 𝜑 ∧ ( 𝑟𝑅𝑠𝑆 ) ) → ( 𝑟 ·s 𝑠 ) ∈ No )
189 188 adantrl ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( 𝑟 ·s 𝑠 ) ∈ No )
190 187 189 subscld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∈ No )
191 190 adantrrr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∈ No )
192 174 adantrrr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → 𝑟 No )
193 155 adantrr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → 𝑖 No )
194 8 adantr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → 𝐵 No )
195 162 adantrr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → 𝑗 No )
196 simprrl ( ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) → 𝑟 ≤s 𝑖 )
197 196 adantl ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → 𝑟 ≤s 𝑖 )
198 8 adantr ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → 𝐵 No )
199 ssltright ( 𝐵 No → { 𝐵 } <<s ( R ‘ 𝐵 ) )
200 8 199 syl ( 𝜑 → { 𝐵 } <<s ( R ‘ 𝐵 ) )
201 200 adantr ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → { 𝐵 } <<s ( R ‘ 𝐵 ) )
202 65 adantr ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → 𝐵 ∈ { 𝐵 } )
203 201 202 161 ssltsepcd ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → 𝐵 <s 𝑗 )
204 198 162 203 sltled ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → 𝐵 ≤s 𝑗 )
205 204 adantrr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → 𝐵 ≤s 𝑗 )
206 192 193 194 195 197 205 slemuld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → ( ( 𝑟 ·s 𝑗 ) -s ( 𝑟 ·s 𝐵 ) ) ≤s ( ( 𝑖 ·s 𝑗 ) -s ( 𝑖 ·s 𝐵 ) ) )
207 177 175 166 158 slesubsub2bd ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( ( 𝑟 ·s 𝑗 ) -s ( 𝑟 ·s 𝐵 ) ) ≤s ( ( 𝑖 ·s 𝑗 ) -s ( 𝑖 ·s 𝐵 ) ) ↔ ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) ) )
208 158 166 subscld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) ∈ No )
209 175 177 subscld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) ∈ No )
210 208 209 164 sleadd1d ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) ↔ ( ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ) )
211 207 210 bitrd ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( ( 𝑟 ·s 𝑗 ) -s ( 𝑟 ·s 𝐵 ) ) ≤s ( ( 𝑖 ·s 𝑗 ) -s ( 𝑖 ·s 𝐵 ) ) ↔ ( ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ) )
212 211 adantrrr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑟 ·s 𝑗 ) -s ( 𝑟 ·s 𝐵 ) ) ≤s ( ( 𝑖 ·s 𝑗 ) -s ( 𝑖 ·s 𝐵 ) ) ↔ ( ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ) )
213 206 212 mpbid ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) )
214 158 164 166 addsubsd ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) = ( ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) )
215 214 adantrrr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) = ( ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) )
216 175 164 177 addsubsd ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑟 ·s 𝑗 ) ) = ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) )
217 216 adantrrr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑟 ·s 𝑗 ) ) = ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) )
218 213 215 217 3brtr4d ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑟 ·s 𝑗 ) ) )
219 6 adantr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → 𝐴 No )
220 185 adantrrr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → 𝑠 No )
221 6 adantr ( ( 𝜑 ∧ ( 𝑟𝑅𝑠𝑆 ) ) → 𝐴 No )
222 85 simp3d ( 𝜑 → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 )
223 222 adantr ( ( 𝜑 ∧ ( 𝑟𝑅𝑠𝑆 ) ) → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 )
224 90 adantr ( ( 𝜑 ∧ ( 𝑟𝑅𝑠𝑆 ) ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } )
225 223 224 172 ssltsepcd ( ( 𝜑 ∧ ( 𝑟𝑅𝑠𝑆 ) ) → 𝐴 <s 𝑟 )
226 221 173 225 sltled ( ( 𝜑 ∧ ( 𝑟𝑅𝑠𝑆 ) ) → 𝐴 ≤s 𝑟 )
227 226 adantrl ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → 𝐴 ≤s 𝑟 )
228 227 adantrrr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → 𝐴 ≤s 𝑟 )
229 simprrr ( ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) → 𝑠 ≤s 𝑗 )
230 229 adantl ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → 𝑠 ≤s 𝑗 )
231 219 192 220 195 228 230 slemuld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → ( ( 𝐴 ·s 𝑗 ) -s ( 𝐴 ·s 𝑠 ) ) ≤s ( ( 𝑟 ·s 𝑗 ) -s ( 𝑟 ·s 𝑠 ) ) )
232 164 177 186 189 slesubsubbd ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( ( 𝐴 ·s 𝑗 ) -s ( 𝐴 ·s 𝑠 ) ) ≤s ( ( 𝑟 ·s 𝑗 ) -s ( 𝑟 ·s 𝑠 ) ) ↔ ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ≤s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) )
233 164 177 subscld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ∈ No )
234 186 189 subscld ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ∈ No )
235 233 234 175 sleadd2d ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ≤s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ↔ ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ) ≤s ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) ) )
236 232 235 bitrd ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( ( 𝐴 ·s 𝑗 ) -s ( 𝐴 ·s 𝑠 ) ) ≤s ( ( 𝑟 ·s 𝑗 ) -s ( 𝑟 ·s 𝑠 ) ) ↔ ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ) ≤s ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) ) )
237 236 adantrrr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝐴 ·s 𝑗 ) -s ( 𝐴 ·s 𝑠 ) ) ≤s ( ( 𝑟 ·s 𝑗 ) -s ( 𝑟 ·s 𝑠 ) ) ↔ ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ) ≤s ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) ) )
238 231 237 mpbid ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ) ≤s ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) )
239 175 164 177 addsubsassd ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑟 ·s 𝑗 ) ) = ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ) )
240 239 adantrrr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑟 ·s 𝑗 ) ) = ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ) )
241 175 186 189 addsubsassd ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) = ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) )
242 241 adantrrr ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) = ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) )
243 238 240 242 3brtr4d ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑟 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
244 168 179 191 218 243 sletrd ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
245 244 anassrs ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) ∧ ( ( 𝑟𝑅𝑠𝑆 ) ∧ ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
246 245 expr ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) ∧ ( 𝑟𝑅𝑠𝑆 ) ) → ( ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) → ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) )
247 246 reximdvva ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → ( ∃ 𝑟𝑅𝑠𝑆 ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) → ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) )
248 247 expcom ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) → ( 𝜑 → ( ∃ 𝑟𝑅𝑠𝑆 ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) → ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) )
249 248 com23 ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) → ( ∃ 𝑟𝑅𝑠𝑆 ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) → ( 𝜑 → ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) )
250 249 imp ( ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ∃ 𝑟𝑅𝑠𝑆 ( 𝑟 ≤s 𝑖𝑠 ≤s 𝑗 ) ) → ( 𝜑 → ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) )
251 152 250 sylan2br ( ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ∃ 𝑟𝑅 𝑟 ≤s 𝑖 ∧ ∃ 𝑠𝑆 𝑠 ≤s 𝑗 ) ) → ( 𝜑 → ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) )
252 251 an4s ( ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑟𝑅 𝑟 ≤s 𝑖 ) ∧ ( 𝑗 ∈ ( R ‘ 𝐵 ) ∧ ∃ 𝑠𝑆 𝑠 ≤s 𝑗 ) ) → ( 𝜑 → ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) )
253 252 impcom ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑟𝑅 𝑟 ≤s 𝑖 ) ∧ ( 𝑗 ∈ ( R ‘ 𝐵 ) ∧ ∃ 𝑠𝑆 𝑠 ≤s 𝑗 ) ) ) → ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
254 253 anassrs ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑟𝑅 𝑟 ≤s 𝑖 ) ) ∧ ( 𝑗 ∈ ( R ‘ 𝐵 ) ∧ ∃ 𝑠𝑆 𝑠 ≤s 𝑗 ) ) → ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
255 254 expr ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑟𝑅 𝑟 ≤s 𝑖 ) ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) → ( ∃ 𝑠𝑆 𝑠 ≤s 𝑗 → ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) )
256 255 ralimdva ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑟𝑅 𝑟 ≤s 𝑖 ) ) → ( ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑠𝑆 𝑠 ≤s 𝑗 → ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) )
257 151 256 mpd ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑟𝑅 𝑟 ≤s 𝑖 ) ) → ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
258 257 expr ( ( 𝜑𝑖 ∈ ( R ‘ 𝐴 ) ) → ( ∃ 𝑟𝑅 𝑟 ≤s 𝑖 → ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) )
259 258 ralimdva ( 𝜑 → ( ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑟𝑅 𝑟 ≤s 𝑖 → ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) )
260 149 259 mpd ( 𝜑 → ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
261 eqeq1 ( 𝑏 = 𝑧 → ( 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ↔ 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) )
262 261 2rexbidv ( 𝑏 = 𝑧 → ( ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ↔ ∃ 𝑟𝑅𝑠𝑆 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) )
263 262 rexab ( ∃ 𝑧 ∈ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ↔ ∃ 𝑧 ( ∃ 𝑟𝑅𝑠𝑆 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) )
264 r19.41vv ( ∃ 𝑟𝑅𝑠𝑆 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ( ∃ 𝑟𝑅𝑠𝑆 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) )
265 264 exbii ( ∃ 𝑧𝑟𝑅𝑠𝑆 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ∃ 𝑧 ( ∃ 𝑟𝑅𝑠𝑆 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) )
266 rexcom4 ( ∃ 𝑟𝑅𝑧𝑠𝑆 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ∃ 𝑧𝑟𝑅𝑠𝑆 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) )
267 rexcom4 ( ∃ 𝑠𝑆𝑧 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ∃ 𝑧𝑠𝑆 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) )
268 ovex ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∈ V
269 breq2 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ↔ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) )
270 268 269 ceqsexv ( ∃ 𝑧 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
271 270 rexbii ( ∃ 𝑠𝑆𝑧 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ∃ 𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
272 267 271 bitr3i ( ∃ 𝑧𝑠𝑆 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ∃ 𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
273 272 rexbii ( ∃ 𝑟𝑅𝑧𝑠𝑆 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
274 266 273 bitr3i ( ∃ 𝑧𝑟𝑅𝑠𝑆 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
275 263 265 274 3bitr2i ( ∃ 𝑧 ∈ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ↔ ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
276 ssun2 { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ⊆ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } )
277 ssrexv ( { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ⊆ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) → ( ∃ 𝑧 ∈ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) )
278 276 277 ax-mp ( ∃ 𝑧 ∈ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 )
279 275 278 sylbir ( ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 )
280 279 2ralimi ( ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑟𝑅𝑠𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 )
281 260 280 syl ( 𝜑 → ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 )
282 ralunb ( ∀ 𝑥𝑂 ∈ ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ↔ ( ∀ 𝑥𝑂 ∈ { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ∧ ∀ 𝑥𝑂 ∈ { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) )
283 eqeq1 ( 𝑒 = 𝑥𝑂 → ( 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ↔ 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ) )
284 283 2rexbidv ( 𝑒 = 𝑥𝑂 → ( ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ↔ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ) )
285 284 ralab ( ∀ 𝑥𝑂 ∈ { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ↔ ∀ 𝑥𝑂 ( ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) )
286 r19.23v ( ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ( ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) )
287 286 ralbii ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ( ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) )
288 r19.23v ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ( ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ( ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) )
289 287 288 bitri ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ( ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) )
290 289 albii ( ∀ 𝑥𝑂𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑥𝑂 ( ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) )
291 ralcom4 ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑥𝑂𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑥𝑂𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) )
292 ralcom4 ( ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑥𝑂𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) )
293 ovex ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ∈ V
294 breq1 ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ( 𝑥𝑂 ≤s 𝑧 ↔ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) )
295 294 rexbidv ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ( ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ↔ ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) )
296 293 295 ceqsalv ( ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 )
297 296 ralbii ( ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 )
298 292 297 bitr3i ( ∀ 𝑥𝑂𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 )
299 298 ralbii ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑥𝑂𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 )
300 291 299 bitr3i ( ∀ 𝑥𝑂𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 )
301 285 290 300 3bitr2i ( ∀ 𝑥𝑂 ∈ { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ↔ ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 )
302 eqeq1 ( = 𝑥𝑂 → ( = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ↔ 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ) )
303 302 2rexbidv ( = 𝑥𝑂 → ( ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ↔ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ) )
304 303 ralab ( ∀ 𝑥𝑂 ∈ { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ↔ ∀ 𝑥𝑂 ( ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) )
305 r19.23v ( ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ( ∃ 𝑗 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) )
306 305 ralbii ( ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ( ∃ 𝑗 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) )
307 r19.23v ( ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ( ∃ 𝑗 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ( ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) )
308 306 307 bitri ( ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ( ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) )
309 308 albii ( ∀ 𝑥𝑂𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑥𝑂 ( ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) )
310 ralcom4 ( ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑥𝑂𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑥𝑂𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) )
311 ralcom4 ( ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑥𝑂𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) )
312 ovex ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ∈ V
313 breq1 ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ( 𝑥𝑂 ≤s 𝑧 ↔ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) )
314 313 rexbidv ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ( ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ↔ ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) )
315 312 314 ceqsalv ( ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 )
316 315 ralbii ( ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 )
317 311 316 bitr3i ( ∀ 𝑥𝑂𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 )
318 317 ralbii ( ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑥𝑂𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 )
319 310 318 bitr3i ( ∀ 𝑥𝑂𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 )
320 304 309 319 3bitr2i ( ∀ 𝑥𝑂 ∈ { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ↔ ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 )
321 301 320 anbi12i ( ( ∀ 𝑥𝑂 ∈ { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ∧ ∀ 𝑥𝑂 ∈ { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ∧ ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) )
322 282 321 bitri ( ∀ 𝑥𝑂 ∈ ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ↔ ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ∧ ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) )
323 148 281 322 sylanbrc ( 𝜑 → ∀ 𝑥𝑂 ∈ ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 )
324 1 3 cofcutr1d ( 𝜑 → ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑡𝐿 𝑙 ≤s 𝑡 )
325 2 4 cofcutr2d ( 𝜑 → ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑢𝑆 𝑢 ≤s 𝑚 )
326 325 adantr ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑡𝐿 𝑙 ≤s 𝑡 ) ) → ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑢𝑆 𝑢 ≤s 𝑚 )
327 reeanv ( ∃ 𝑡𝐿𝑢𝑆 ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ↔ ( ∃ 𝑡𝐿 𝑙 ≤s 𝑡 ∧ ∃ 𝑢𝑆 𝑢 ≤s 𝑚 ) )
328 33 adantr ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝐿 No )
329 simprl ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝑡𝐿 )
330 328 329 sseldd ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝑡 No )
331 330 adantrl ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → 𝑡 No )
332 8 adantr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → 𝐵 No )
333 331 332 mulscld ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( 𝑡 ·s 𝐵 ) ∈ No )
334 6 adantr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → 𝐴 No )
335 181 adantr ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝑆 No )
336 simprr ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝑢𝑆 )
337 335 336 sseldd ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝑢 No )
338 337 adantrl ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → 𝑢 No )
339 334 338 mulscld ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( 𝐴 ·s 𝑢 ) ∈ No )
340 333 339 addscld ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) ∈ No )
341 331 338 mulscld ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( 𝑡 ·s 𝑢 ) ∈ No )
342 340 341 subscld ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No )
343 342 adantrrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No )
344 simprl ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝑙 ∈ ( L ‘ 𝐴 ) )
345 16 344 sselid ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝑙 No )
346 8 adantr ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝐵 No )
347 345 346 mulscld ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑙 ·s 𝐵 ) ∈ No )
348 347 adantrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( 𝑙 ·s 𝐵 ) ∈ No )
349 348 339 addscld ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) ∈ No )
350 345 adantrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → 𝑙 No )
351 350 338 mulscld ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( 𝑙 ·s 𝑢 ) ∈ No )
352 349 351 subscld ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑙 ·s 𝑢 ) ) ∈ No )
353 352 adantrrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑙 ·s 𝑢 ) ) ∈ No )
354 6 adantr ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝐴 No )
355 simprr ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝑚 ∈ ( R ‘ 𝐵 ) )
356 160 355 sselid ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝑚 No )
357 354 356 mulscld ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝐴 ·s 𝑚 ) ∈ No )
358 357 adantrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( 𝐴 ·s 𝑚 ) ∈ No )
359 348 358 addscld ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) ∈ No )
360 345 356 mulscld ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑙 ·s 𝑚 ) ∈ No )
361 360 adantrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( 𝑙 ·s 𝑚 ) ∈ No )
362 359 361 subscld ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ∈ No )
363 362 adantrrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ∈ No )
364 345 adantrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → 𝑙 No )
365 331 adantrrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → 𝑡 No )
366 8 adantr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → 𝐵 No )
367 338 adantrrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → 𝑢 No )
368 simprrl ( ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) → 𝑙 ≤s 𝑡 )
369 368 adantl ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → 𝑙 ≤s 𝑡 )
370 8 adantr ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝐵 No )
371 scutcut ( 𝑀 <<s 𝑆 → ( ( 𝑀 |s 𝑆 ) ∈ No 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) )
372 2 371 syl ( 𝜑 → ( ( 𝑀 |s 𝑆 ) ∈ No 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) )
373 372 simp3d ( 𝜑 → { ( 𝑀 |s 𝑆 ) } <<s 𝑆 )
374 373 adantr ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → { ( 𝑀 |s 𝑆 ) } <<s 𝑆 )
375 ovex ( 𝑀 |s 𝑆 ) ∈ V
376 375 snid ( 𝑀 |s 𝑆 ) ∈ { ( 𝑀 |s 𝑆 ) }
377 4 376 eqeltrdi ( 𝜑𝐵 ∈ { ( 𝑀 |s 𝑆 ) } )
378 377 adantr ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝐵 ∈ { ( 𝑀 |s 𝑆 ) } )
379 374 378 336 ssltsepcd ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝐵 <s 𝑢 )
380 370 337 379 sltled ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝐵 ≤s 𝑢 )
381 380 adantrl ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → 𝐵 ≤s 𝑢 )
382 381 adantrrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → 𝐵 ≤s 𝑢 )
383 364 365 366 367 369 382 slemuld ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → ( ( 𝑙 ·s 𝑢 ) -s ( 𝑙 ·s 𝐵 ) ) ≤s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) )
384 351 348 341 333 slesubsub2bd ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝑢 ) -s ( 𝑙 ·s 𝐵 ) ) ≤s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ↔ ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) ) )
385 333 341 subscld ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No )
386 348 351 subscld ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) ∈ No )
387 385 386 339 sleadd1d ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) ↔ ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) )
388 384 387 bitrd ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝑢 ) -s ( 𝑙 ·s 𝐵 ) ) ≤s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ↔ ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) )
389 388 adantrrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑙 ·s 𝑢 ) -s ( 𝑙 ·s 𝐵 ) ) ≤s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ↔ ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) )
390 383 389 mpbid ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) )
391 333 339 341 addsubsd ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) = ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) )
392 391 adantrrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) = ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) )
393 348 339 351 addsubsd ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑙 ·s 𝑢 ) ) = ( ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) )
394 393 adantrrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑙 ·s 𝑢 ) ) = ( ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) )
395 390 392 394 3brtr4d ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑙 ·s 𝑢 ) ) )
396 6 adantr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → 𝐴 No )
397 356 adantrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → 𝑚 No )
398 ssltleft ( 𝐴 No → ( L ‘ 𝐴 ) <<s { 𝐴 } )
399 6 398 syl ( 𝜑 → ( L ‘ 𝐴 ) <<s { 𝐴 } )
400 399 adantr ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → ( L ‘ 𝐴 ) <<s { 𝐴 } )
401 snidg ( 𝐴 No 𝐴 ∈ { 𝐴 } )
402 6 401 syl ( 𝜑𝐴 ∈ { 𝐴 } )
403 402 adantr ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝐴 ∈ { 𝐴 } )
404 400 344 403 ssltsepcd ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝑙 <s 𝐴 )
405 345 354 404 sltled ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝑙 ≤s 𝐴 )
406 405 adantrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → 𝑙 ≤s 𝐴 )
407 simprrr ( ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) → 𝑢 ≤s 𝑚 )
408 407 adantl ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → 𝑢 ≤s 𝑚 )
409 364 396 367 397 406 408 slemuld ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → ( ( 𝑙 ·s 𝑚 ) -s ( 𝑙 ·s 𝑢 ) ) ≤s ( ( 𝐴 ·s 𝑚 ) -s ( 𝐴 ·s 𝑢 ) ) )
410 361 358 351 339 slesubsub3bd ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝑚 ) -s ( 𝑙 ·s 𝑢 ) ) ≤s ( ( 𝐴 ·s 𝑚 ) -s ( 𝐴 ·s 𝑢 ) ) ↔ ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ≤s ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ) )
411 339 351 subscld ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ∈ No )
412 358 361 subscld ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ∈ No )
413 411 412 348 sleadd2d ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ≤s ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ↔ ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ) ≤s ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ) ) )
414 410 413 bitrd ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝑚 ) -s ( 𝑙 ·s 𝑢 ) ) ≤s ( ( 𝐴 ·s 𝑚 ) -s ( 𝐴 ·s 𝑢 ) ) ↔ ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ) ≤s ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ) ) )
415 414 adantrrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑙 ·s 𝑚 ) -s ( 𝑙 ·s 𝑢 ) ) ≤s ( ( 𝐴 ·s 𝑚 ) -s ( 𝐴 ·s 𝑢 ) ) ↔ ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ) ≤s ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ) ) )
416 409 415 mpbid ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ) ≤s ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ) )
417 348 339 351 addsubsassd ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑙 ·s 𝑢 ) ) = ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ) )
418 417 adantrrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑙 ·s 𝑢 ) ) = ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ) )
419 348 358 361 addsubsassd ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) = ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ) )
420 419 adantrrr ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) = ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ) )
421 416 418 420 3brtr4d ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑙 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
422 343 353 363 395 421 sletrd ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
423 422 anassrs ( ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) ∧ ( ( 𝑡𝐿𝑢𝑆 ) ∧ ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
424 423 expr ( ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) ∧ ( 𝑡𝐿𝑢𝑆 ) ) → ( ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
425 424 reximdvva ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → ( ∃ 𝑡𝐿𝑢𝑆 ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) → ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
426 425 expcom ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) → ( 𝜑 → ( ∃ 𝑡𝐿𝑢𝑆 ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) → ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) )
427 426 com23 ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) → ( ∃ 𝑡𝐿𝑢𝑆 ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) → ( 𝜑 → ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) )
428 427 imp ( ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ∃ 𝑡𝐿𝑢𝑆 ( 𝑙 ≤s 𝑡𝑢 ≤s 𝑚 ) ) → ( 𝜑 → ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
429 327 428 sylan2br ( ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ∃ 𝑡𝐿 𝑙 ≤s 𝑡 ∧ ∃ 𝑢𝑆 𝑢 ≤s 𝑚 ) ) → ( 𝜑 → ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
430 429 an4s ( ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑡𝐿 𝑙 ≤s 𝑡 ) ∧ ( 𝑚 ∈ ( R ‘ 𝐵 ) ∧ ∃ 𝑢𝑆 𝑢 ≤s 𝑚 ) ) → ( 𝜑 → ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
431 430 impcom ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑡𝐿 𝑙 ≤s 𝑡 ) ∧ ( 𝑚 ∈ ( R ‘ 𝐵 ) ∧ ∃ 𝑢𝑆 𝑢 ≤s 𝑚 ) ) ) → ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
432 431 anassrs ( ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑡𝐿 𝑙 ≤s 𝑡 ) ) ∧ ( 𝑚 ∈ ( R ‘ 𝐵 ) ∧ ∃ 𝑢𝑆 𝑢 ≤s 𝑚 ) ) → ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
433 432 expr ( ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑡𝐿 𝑙 ≤s 𝑡 ) ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) → ( ∃ 𝑢𝑆 𝑢 ≤s 𝑚 → ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
434 433 ralimdva ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑡𝐿 𝑙 ≤s 𝑡 ) ) → ( ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑢𝑆 𝑢 ≤s 𝑚 → ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
435 326 434 mpd ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑡𝐿 𝑙 ≤s 𝑡 ) ) → ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
436 435 expr ( ( 𝜑𝑙 ∈ ( L ‘ 𝐴 ) ) → ( ∃ 𝑡𝐿 𝑙 ≤s 𝑡 → ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
437 436 ralimdva ( 𝜑 → ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑡𝐿 𝑙 ≤s 𝑡 → ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
438 324 437 mpd ( 𝜑 → ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
439 eqeq1 ( 𝑐 = 𝑧 → ( 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) )
440 439 2rexbidv ( 𝑐 = 𝑧 → ( ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ ∃ 𝑡𝐿𝑢𝑆 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) )
441 440 rexab ( ∃ 𝑧 ∈ { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ↔ ∃ 𝑧 ( ∃ 𝑡𝐿𝑢𝑆 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
442 r19.41vv ( ∃ 𝑡𝐿𝑢𝑆 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ( ∃ 𝑡𝐿𝑢𝑆 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
443 442 exbii ( ∃ 𝑧𝑡𝐿𝑢𝑆 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ∃ 𝑧 ( ∃ 𝑡𝐿𝑢𝑆 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
444 rexcom4 ( ∃ 𝑡𝐿𝑧𝑢𝑆 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ∃ 𝑧𝑡𝐿𝑢𝑆 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
445 rexcom4 ( ∃ 𝑢𝑆𝑧 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ∃ 𝑧𝑢𝑆 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
446 ovex ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∈ V
447 breq1 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ↔ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
448 446 447 ceqsexv ( ∃ 𝑧 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
449 448 rexbii ( ∃ 𝑢𝑆𝑧 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ∃ 𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
450 445 449 bitr3i ( ∃ 𝑧𝑢𝑆 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ∃ 𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
451 450 rexbii ( ∃ 𝑡𝐿𝑧𝑢𝑆 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
452 444 451 bitr3i ( ∃ 𝑧𝑡𝐿𝑢𝑆 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
453 441 443 452 3bitr2i ( ∃ 𝑧 ∈ { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ↔ ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
454 ssun1 { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ⊆ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } )
455 ssrexv ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ⊆ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → ( ∃ 𝑧 ∈ { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
456 454 455 ax-mp ( ∃ 𝑧 ∈ { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
457 453 456 sylbir ( ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
458 457 2ralimi ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑡𝐿𝑢𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
459 438 458 syl ( 𝜑 → ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
460 1 3 cofcutr2d ( 𝜑 → ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑣𝑅 𝑣 ≤s 𝑥 )
461 2 4 cofcutr1d ( 𝜑 → ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑤𝑀 𝑦 ≤s 𝑤 )
462 461 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑣𝑅 𝑣 ≤s 𝑥 ) ) → ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑤𝑀 𝑦 ≤s 𝑤 )
463 reeanv ( ∃ 𝑣𝑅𝑤𝑀 ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ↔ ( ∃ 𝑣𝑅 𝑣 ≤s 𝑥 ∧ ∃ 𝑤𝑀 𝑦 ≤s 𝑤 ) )
464 170 adantr ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝑅 No )
465 simprl ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝑣𝑅 )
466 464 465 sseldd ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝑣 No )
467 8 adantr ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝐵 No )
468 466 467 mulscld ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( 𝑣 ·s 𝐵 ) ∈ No )
469 468 adantrl ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( 𝑣 ·s 𝐵 ) ∈ No )
470 6 adantr ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝐴 No )
471 44 adantr ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝑀 No )
472 simprr ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝑤𝑀 )
473 471 472 sseldd ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝑤 No )
474 470 473 mulscld ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( 𝐴 ·s 𝑤 ) ∈ No )
475 474 adantrl ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( 𝐴 ·s 𝑤 ) ∈ No )
476 469 475 addscld ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) ∈ No )
477 466 473 mulscld ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( 𝑣 ·s 𝑤 ) ∈ No )
478 477 adantrl ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( 𝑣 ·s 𝑤 ) ∈ No )
479 476 478 subscld ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No )
480 479 adantrrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No )
481 6 adantr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → 𝐴 No )
482 simprr ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝑦 ∈ ( L ‘ 𝐵 ) )
483 23 482 sselid ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝑦 No )
484 483 adantrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → 𝑦 No )
485 481 484 mulscld ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( 𝐴 ·s 𝑦 ) ∈ No )
486 469 485 addscld ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) ∈ No )
487 466 adantrl ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → 𝑣 No )
488 487 484 mulscld ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( 𝑣 ·s 𝑦 ) ∈ No )
489 486 488 subscld ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑣 ·s 𝑦 ) ) ∈ No )
490 489 adantrrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑣 ·s 𝑦 ) ) ∈ No )
491 simprl ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝑥 ∈ ( R ‘ 𝐴 ) )
492 153 491 sselid ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝑥 No )
493 8 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝐵 No )
494 492 493 mulscld ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑥 ·s 𝐵 ) ∈ No )
495 494 adantrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( 𝑥 ·s 𝐵 ) ∈ No )
496 495 485 addscld ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) ∈ No )
497 492 483 mulscld ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑥 ·s 𝑦 ) ∈ No )
498 497 adantrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( 𝑥 ·s 𝑦 ) ∈ No )
499 496 498 subscld ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ∈ No )
500 499 adantrrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ∈ No )
501 6 adantr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → 𝐴 No )
502 487 adantrrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → 𝑣 No )
503 483 adantrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → 𝑦 No )
504 473 adantrl ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → 𝑤 No )
505 504 adantrrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → 𝑤 No )
506 3 sneqd ( 𝜑 → { 𝐴 } = { ( 𝐿 |s 𝑅 ) } )
507 506 222 eqbrtrd ( 𝜑 → { 𝐴 } <<s 𝑅 )
508 507 adantr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → { 𝐴 } <<s 𝑅 )
509 481 401 syl ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → 𝐴 ∈ { 𝐴 } )
510 simprrl ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → 𝑣𝑅 )
511 508 509 510 ssltsepcd ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → 𝐴 <s 𝑣 )
512 481 487 511 sltled ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → 𝐴 ≤s 𝑣 )
513 512 adantrrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → 𝐴 ≤s 𝑣 )
514 simprrr ( ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) → 𝑦 ≤s 𝑤 )
515 514 adantl ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → 𝑦 ≤s 𝑤 )
516 501 502 503 505 513 515 slemuld ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( 𝐴 ·s 𝑤 ) -s ( 𝐴 ·s 𝑦 ) ) ≤s ( ( 𝑣 ·s 𝑤 ) -s ( 𝑣 ·s 𝑦 ) ) )
517 475 478 485 488 slesubsubbd ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( ( ( 𝐴 ·s 𝑤 ) -s ( 𝐴 ·s 𝑦 ) ) ≤s ( ( 𝑣 ·s 𝑤 ) -s ( 𝑣 ·s 𝑦 ) ) ↔ ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ) )
518 475 478 subscld ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No )
519 485 488 subscld ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ∈ No )
520 518 519 469 sleadd2d ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ↔ ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ) ≤s ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ) ) )
521 517 520 bitrd ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( ( ( 𝐴 ·s 𝑤 ) -s ( 𝐴 ·s 𝑦 ) ) ≤s ( ( 𝑣 ·s 𝑤 ) -s ( 𝑣 ·s 𝑦 ) ) ↔ ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ) ≤s ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ) ) )
522 521 adantrrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝐴 ·s 𝑤 ) -s ( 𝐴 ·s 𝑦 ) ) ≤s ( ( 𝑣 ·s 𝑤 ) -s ( 𝑣 ·s 𝑦 ) ) ↔ ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ) ≤s ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ) ) )
523 516 522 mpbid ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ) ≤s ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ) )
524 469 475 478 addsubsassd ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) = ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ) )
525 524 adantrrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) = ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ) )
526 469 485 488 addsubsassd ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑣 ·s 𝑦 ) ) = ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ) )
527 526 adantrrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑣 ·s 𝑦 ) ) = ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ) )
528 523 525 527 3brtr4d ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑣 ·s 𝑦 ) ) )
529 492 adantrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → 𝑥 No )
530 8 adantr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → 𝐵 No )
531 simprrl ( ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) → 𝑣 ≤s 𝑥 )
532 531 adantl ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → 𝑣 ≤s 𝑥 )
533 493 61 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → ( L ‘ 𝐵 ) <<s { 𝐵 } )
534 65 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝐵 ∈ { 𝐵 } )
535 533 482 534 ssltsepcd ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝑦 <s 𝐵 )
536 483 493 535 sltled ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝑦 ≤s 𝐵 )
537 536 adantrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → 𝑦 ≤s 𝐵 )
538 502 529 503 530 532 537 slemuld ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑦 ) ) ≤s ( ( 𝑥 ·s 𝐵 ) -s ( 𝑥 ·s 𝑦 ) ) )
539 469 488 subscld ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑦 ) ) ∈ No )
540 539 adantrrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑦 ) ) ∈ No )
541 495 498 subscld ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( ( 𝑥 ·s 𝐵 ) -s ( 𝑥 ·s 𝑦 ) ) ∈ No )
542 541 adantrrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( 𝑥 ·s 𝐵 ) -s ( 𝑥 ·s 𝑦 ) ) ∈ No )
543 485 adantrrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( 𝐴 ·s 𝑦 ) ∈ No )
544 540 542 543 sleadd1d ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑦 ) ) ≤s ( ( 𝑥 ·s 𝐵 ) -s ( 𝑥 ·s 𝑦 ) ) ↔ ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑦 ) ) +s ( 𝐴 ·s 𝑦 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) -s ( 𝑥 ·s 𝑦 ) ) +s ( 𝐴 ·s 𝑦 ) ) ) )
545 538 544 mpbid ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑦 ) ) +s ( 𝐴 ·s 𝑦 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) -s ( 𝑥 ·s 𝑦 ) ) +s ( 𝐴 ·s 𝑦 ) ) )
546 469 485 488 addsubsd ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑣 ·s 𝑦 ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑦 ) ) +s ( 𝐴 ·s 𝑦 ) ) )
547 546 adantrrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑣 ·s 𝑦 ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑦 ) ) +s ( 𝐴 ·s 𝑦 ) ) )
548 6 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝐴 No )
549 548 483 mulscld ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝐴 ·s 𝑦 ) ∈ No )
550 494 549 497 addsubsd ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) = ( ( ( 𝑥 ·s 𝐵 ) -s ( 𝑥 ·s 𝑦 ) ) +s ( 𝐴 ·s 𝑦 ) ) )
551 550 adantrr ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) = ( ( ( 𝑥 ·s 𝐵 ) -s ( 𝑥 ·s 𝑦 ) ) +s ( 𝐴 ·s 𝑦 ) ) )
552 545 547 551 3brtr4d ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑣 ·s 𝑦 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
553 480 490 500 528 552 sletrd ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
554 553 anassrs ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) ∧ ( ( 𝑣𝑅𝑤𝑀 ) ∧ ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
555 554 expr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
556 555 reximdvva ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → ( ∃ 𝑣𝑅𝑤𝑀 ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) → ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
557 556 expcom ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) → ( 𝜑 → ( ∃ 𝑣𝑅𝑤𝑀 ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) → ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) )
558 557 com23 ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) → ( ∃ 𝑣𝑅𝑤𝑀 ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) → ( 𝜑 → ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) )
559 558 imp ( ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ∃ 𝑣𝑅𝑤𝑀 ( 𝑣 ≤s 𝑥𝑦 ≤s 𝑤 ) ) → ( 𝜑 → ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
560 463 559 sylan2br ( ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ∃ 𝑣𝑅 𝑣 ≤s 𝑥 ∧ ∃ 𝑤𝑀 𝑦 ≤s 𝑤 ) ) → ( 𝜑 → ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
561 560 an4s ( ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑣𝑅 𝑣 ≤s 𝑥 ) ∧ ( 𝑦 ∈ ( L ‘ 𝐵 ) ∧ ∃ 𝑤𝑀 𝑦 ≤s 𝑤 ) ) → ( 𝜑 → ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
562 561 impcom ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑣𝑅 𝑣 ≤s 𝑥 ) ∧ ( 𝑦 ∈ ( L ‘ 𝐵 ) ∧ ∃ 𝑤𝑀 𝑦 ≤s 𝑤 ) ) ) → ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
563 562 anassrs ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑣𝑅 𝑣 ≤s 𝑥 ) ) ∧ ( 𝑦 ∈ ( L ‘ 𝐵 ) ∧ ∃ 𝑤𝑀 𝑦 ≤s 𝑤 ) ) → ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
564 563 expr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑣𝑅 𝑣 ≤s 𝑥 ) ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) → ( ∃ 𝑤𝑀 𝑦 ≤s 𝑤 → ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
565 564 ralimdva ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑣𝑅 𝑣 ≤s 𝑥 ) ) → ( ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑤𝑀 𝑦 ≤s 𝑤 → ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
566 462 565 mpd ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑣𝑅 𝑣 ≤s 𝑥 ) ) → ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
567 566 expr ( ( 𝜑𝑥 ∈ ( R ‘ 𝐴 ) ) → ( ∃ 𝑣𝑅 𝑣 ≤s 𝑥 → ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
568 567 ralimdva ( 𝜑 → ( ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑣𝑅 𝑣 ≤s 𝑥 → ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
569 460 568 mpd ( 𝜑 → ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
570 eqeq1 ( 𝑑 = 𝑧 → ( 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) )
571 570 2rexbidv ( 𝑑 = 𝑧 → ( ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ ∃ 𝑣𝑅𝑤𝑀 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) )
572 571 rexab ( ∃ 𝑧 ∈ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ↔ ∃ 𝑧 ( ∃ 𝑣𝑅𝑤𝑀 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
573 r19.41vv ( ∃ 𝑣𝑅𝑤𝑀 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ( ∃ 𝑣𝑅𝑤𝑀 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
574 573 exbii ( ∃ 𝑧𝑣𝑅𝑤𝑀 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ∃ 𝑧 ( ∃ 𝑣𝑅𝑤𝑀 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
575 rexcom4 ( ∃ 𝑣𝑅𝑧𝑤𝑀 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ∃ 𝑧𝑣𝑅𝑤𝑀 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
576 rexcom4 ( ∃ 𝑤𝑀𝑧 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ∃ 𝑧𝑤𝑀 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
577 ovex ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∈ V
578 breq1 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ↔ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
579 577 578 ceqsexv ( ∃ 𝑧 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
580 579 rexbii ( ∃ 𝑤𝑀𝑧 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ∃ 𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
581 576 580 bitr3i ( ∃ 𝑧𝑤𝑀 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ∃ 𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
582 581 rexbii ( ∃ 𝑣𝑅𝑧𝑤𝑀 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
583 575 582 bitr3i ( ∃ 𝑧𝑣𝑅𝑤𝑀 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
584 572 574 583 3bitr2i ( ∃ 𝑧 ∈ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ↔ ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
585 ssun2 { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ⊆ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } )
586 ssrexv ( { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ⊆ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → ( ∃ 𝑧 ∈ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
587 585 586 ax-mp ( ∃ 𝑧 ∈ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
588 584 587 sylbir ( ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
589 588 2ralimi ( ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑣𝑅𝑤𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
590 569 589 syl ( 𝜑 → ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
591 ralunb ( ∀ 𝑥𝑂 ∈ ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ↔ ( ∀ 𝑥𝑂 ∈ { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ∧ ∀ 𝑥𝑂 ∈ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) )
592 eqeq1 ( 𝑘 = 𝑥𝑂 → ( 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ↔ 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
593 592 2rexbidv ( 𝑘 = 𝑥𝑂 → ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
594 593 ralab ( ∀ 𝑥𝑂 ∈ { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ↔ ∀ 𝑥𝑂 ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) )
595 r19.23v ( ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ( ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) )
596 595 ralbii ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ( ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) )
597 r19.23v ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ( ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) )
598 596 597 bitri ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) )
599 598 albii ( ∀ 𝑥𝑂𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥𝑂 ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) )
600 ralcom4 ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑥𝑂𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥𝑂𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) )
601 ralcom4 ( ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥𝑂𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) )
602 ovex ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ∈ V
603 breq2 ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ( 𝑧 ≤s 𝑥𝑂𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
604 603 rexbidv ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ( ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ↔ ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) )
605 602 604 ceqsalv ( ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
606 605 ralbii ( ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
607 601 606 bitr3i ( ∀ 𝑥𝑂𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
608 607 ralbii ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑥𝑂𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
609 600 608 bitr3i ( ∀ 𝑥𝑂𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
610 594 599 609 3bitr2i ( ∀ 𝑥𝑂 ∈ { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ↔ ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) )
611 eqeq1 ( 𝑛 = 𝑥𝑂 → ( 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ↔ 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
612 611 2rexbidv ( 𝑛 = 𝑥𝑂 → ( ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
613 612 ralab ( ∀ 𝑥𝑂 ∈ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ↔ ∀ 𝑥𝑂 ( ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) )
614 r19.23v ( ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ( ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) )
615 614 ralbii ( ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ( ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) )
616 r19.23v ( ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ( ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ( ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) )
617 615 616 bitri ( ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ( ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) )
618 617 albii ( ∀ 𝑥𝑂𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥𝑂 ( ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) )
619 ralcom4 ( ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑥𝑂𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥𝑂𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) )
620 ralcom4 ( ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥𝑂𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) )
621 ovex ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ∈ V
622 breq2 ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ( 𝑧 ≤s 𝑥𝑂𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
623 622 rexbidv ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ( ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ↔ ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
624 621 623 ceqsalv ( ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
625 624 ralbii ( ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
626 620 625 bitr3i ( ∀ 𝑥𝑂𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
627 626 ralbii ( ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑥𝑂𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
628 619 627 bitr3i ( ∀ 𝑥𝑂𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
629 613 618 628 3bitr2i ( ∀ 𝑥𝑂 ∈ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ↔ ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) )
630 610 629 anbi12i ( ( ∀ 𝑥𝑂 ∈ { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ∧ ∀ 𝑥𝑂 ∈ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ∧ ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
631 591 630 bitri ( ∀ 𝑥𝑂 ∈ ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ↔ ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ∧ ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) )
632 459 590 631 sylanbrc ( 𝜑 → ∀ 𝑥𝑂 ∈ ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 )
633 1 2 3 4 ssltmul1 ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } )
634 10 sneqd ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } = { ( ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) |s ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) } )
635 633 634 breqtrd ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) |s ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) } )
636 1 2 3 4 ssltmul2 ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) )
637 634 636 eqbrtrrd ( 𝜑 → { ( ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) |s ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) } <<s ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) )
638 11 323 632 635 637 cofcut1d ( 𝜑 → ( ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) |s ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )
639 10 638 eqtrd ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝𝐿𝑞𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟𝑅𝑠𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )