Metamath Proof Explorer


Theorem mulsval

Description: The value of surreal multiplication. (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion mulsval ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )

Proof

Step Hyp Ref Expression
1 df-muls ·s = norec2 ( ( 𝑧 ∈ V , 𝑚 ∈ V ↦ ( 1st𝑧 ) / 𝑥 ( 2nd𝑧 ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) ) )
2 1 norec2ov ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ·s 𝐵 ) = ( ⟨ 𝐴 , 𝐵 ⟩ ( 𝑧 ∈ V , 𝑚 ∈ V ↦ ( 1st𝑧 ) / 𝑥 ( 2nd𝑧 ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) ) ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ) )
3 opex 𝐴 , 𝐵 ⟩ ∈ V
4 mulsfn ·s Fn ( No × No )
5 fnfun ( ·s Fn ( No × No ) → Fun ·s )
6 4 5 ax-mp Fun ·s
7 fvex ( L ‘ 𝐴 ) ∈ V
8 fvex ( R ‘ 𝐴 ) ∈ V
9 7 8 unex ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∈ V
10 snex { 𝐴 } ∈ V
11 9 10 unex ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) ∈ V
12 fvex ( L ‘ 𝐵 ) ∈ V
13 fvex ( R ‘ 𝐵 ) ∈ V
14 12 13 unex ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∈ V
15 snex { 𝐵 } ∈ V
16 14 15 unex ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ∈ V
17 11 16 xpex ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∈ V
18 17 difexi ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ∈ V
19 resfunexg ( ( Fun ·s ∧ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ∈ V ) → ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ∈ V )
20 6 18 19 mp2an ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ∈ V
21 fveq2 ( 𝑧 = ⟨ 𝐴 , 𝐵 ⟩ → ( 1st𝑧 ) = ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) )
22 fveq2 ( 𝑧 = ⟨ 𝐴 , 𝐵 ⟩ → ( 2nd𝑧 ) = ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) )
23 22 csbeq1d ( 𝑧 = ⟨ 𝐴 , 𝐵 ⟩ → ( 2nd𝑧 ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) = ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) )
24 21 23 csbeq12dv ( 𝑧 = ⟨ 𝐴 , 𝐵 ⟩ → ( 1st𝑧 ) / 𝑥 ( 2nd𝑧 ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) = ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑥 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) )
25 oveq ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑝 𝑚 𝑦 ) = ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) )
26 oveq ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑥 𝑚 𝑞 ) = ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) )
27 25 26 oveq12d ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) = ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) )
28 oveq ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑝 𝑚 𝑞 ) = ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) )
29 27 28 oveq12d ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) )
30 29 eqeq2d ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) ↔ 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) ) )
31 30 2rexbidv ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) ↔ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) ) )
32 31 abbidv ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } = { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } )
33 oveq ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑟 𝑚 𝑦 ) = ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) )
34 oveq ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑥 𝑚 𝑠 ) = ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) )
35 33 34 oveq12d ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) = ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) )
36 oveq ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑟 𝑚 𝑠 ) = ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) )
37 35 36 oveq12d ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) )
38 37 eqeq2d ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) ↔ 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) ) )
39 38 2rexbidv ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) ) )
40 39 abbidv ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } = { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } )
41 32 40 uneq12d ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) = ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) )
42 oveq ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑡 𝑚 𝑦 ) = ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) )
43 oveq ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑥 𝑚 𝑢 ) = ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) )
44 42 43 oveq12d ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) = ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) )
45 oveq ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑡 𝑚 𝑢 ) = ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) )
46 44 45 oveq12d ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) )
47 46 eqeq2d ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) ↔ 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) ) )
48 47 2rexbidv ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) ↔ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) ) )
49 48 abbidv ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } = { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } )
50 oveq ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑣 𝑚 𝑦 ) = ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) )
51 oveq ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑥 𝑚 𝑤 ) = ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) )
52 50 51 oveq12d ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) = ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) )
53 oveq ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑣 𝑚 𝑤 ) = ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) )
54 52 53 oveq12d ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) )
55 54 eqeq2d ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) ↔ 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) ) )
56 55 2rexbidv ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) ↔ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) ) )
57 56 abbidv ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } = { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } )
58 49 57 uneq12d ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) = ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) )
59 41 58 oveq12d ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) )
60 59 csbeq2dv ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) = ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) )
61 60 csbeq2dv ( 𝑚 = ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑥 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) = ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑥 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) )
62 eqid ( 𝑧 ∈ V , 𝑚 ∈ V ↦ ( 1st𝑧 ) / 𝑥 ( 2nd𝑧 ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) ) = ( 𝑧 ∈ V , 𝑚 ∈ V ↦ ( 1st𝑧 ) / 𝑥 ( 2nd𝑧 ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) )
63 ovex ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) ∈ V
64 63 csbex ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) ∈ V
65 64 csbex ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑥 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) ∈ V
66 24 61 62 65 ovmpo ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ V ∧ ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ ( 𝑧 ∈ V , 𝑚 ∈ V ↦ ( 1st𝑧 ) / 𝑥 ( 2nd𝑧 ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) ) ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ) = ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑥 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) )
67 3 20 66 mp2an ( ⟨ 𝐴 , 𝐵 ⟩ ( 𝑧 ∈ V , 𝑚 ∈ V ↦ ( 1st𝑧 ) / 𝑥 ( 2nd𝑧 ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) ) ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ) = ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑥 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) )
68 op1stg ( ( 𝐴 No 𝐵 No ) → ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐴 )
69 68 csbeq1d ( ( 𝐴 No 𝐵 No ) → ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑥 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) = 𝐴 / 𝑥 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) )
70 op2ndg ( ( 𝐴 No 𝐵 No ) → ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐵 )
71 70 csbeq1d ( ( 𝐴 No 𝐵 No ) → ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) = 𝐵 / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) )
72 71 csbeq2dv ( ( 𝐴 No 𝐵 No ) → 𝐴 / 𝑥 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) = 𝐴 / 𝑥 𝐵 / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) )
73 simpl ( ( 𝐴 No 𝐵 No ) → 𝐴 No )
74 fveq2 ( 𝑥 = 𝐴 → ( L ‘ 𝑥 ) = ( L ‘ 𝐴 ) )
75 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) = ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) )
76 75 oveq2d ( 𝑥 = 𝐴 → ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) = ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) )
77 76 oveq1d ( 𝑥 = 𝐴 → ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) )
78 77 eqeq2d ( 𝑥 = 𝐴 → ( 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) ↔ 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) ) )
79 78 rexbidv ( 𝑥 = 𝐴 → ( ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) ↔ ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) ) )
80 74 79 rexeqbidv ( 𝑥 = 𝐴 → ( ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) ↔ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) ) )
81 80 abbidv ( 𝑥 = 𝐴 → { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } = { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } )
82 fveq2 ( 𝑥 = 𝐴 → ( R ‘ 𝑥 ) = ( R ‘ 𝐴 ) )
83 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) = ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) )
84 83 oveq2d ( 𝑥 = 𝐴 → ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) = ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) )
85 84 oveq1d ( 𝑥 = 𝐴 → ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) )
86 85 eqeq2d ( 𝑥 = 𝐴 → ( 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) ↔ 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) ) )
87 86 rexbidv ( 𝑥 = 𝐴 → ( ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) ↔ ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) ) )
88 82 87 rexeqbidv ( 𝑥 = 𝐴 → ( ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) ) )
89 88 abbidv ( 𝑥 = 𝐴 → { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } = { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } )
90 81 89 uneq12d ( 𝑥 = 𝐴 → ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) = ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) )
91 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) = ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) )
92 91 oveq2d ( 𝑥 = 𝐴 → ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) = ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) )
93 92 oveq1d ( 𝑥 = 𝐴 → ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) )
94 93 eqeq2d ( 𝑥 = 𝐴 → ( 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) ↔ 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) ) )
95 94 rexbidv ( 𝑥 = 𝐴 → ( ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) ↔ ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) ) )
96 74 95 rexeqbidv ( 𝑥 = 𝐴 → ( ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) ↔ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) ) )
97 96 abbidv ( 𝑥 = 𝐴 → { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } = { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } )
98 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) = ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) )
99 98 oveq2d ( 𝑥 = 𝐴 → ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) = ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) )
100 99 oveq1d ( 𝑥 = 𝐴 → ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) )
101 100 eqeq2d ( 𝑥 = 𝐴 → ( 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) ↔ 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) ) )
102 101 rexbidv ( 𝑥 = 𝐴 → ( ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) ↔ ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) ) )
103 82 102 rexeqbidv ( 𝑥 = 𝐴 → ( ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) ↔ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) ) )
104 103 abbidv ( 𝑥 = 𝐴 → { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } = { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } )
105 97 104 uneq12d ( 𝑥 = 𝐴 → ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) = ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) )
106 90 105 oveq12d ( 𝑥 = 𝐴 → ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) )
107 106 csbeq2dv ( 𝑥 = 𝐴 𝐵 / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) = 𝐵 / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) )
108 107 adantl ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑥 = 𝐴 ) → 𝐵 / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) = 𝐵 / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) )
109 73 108 csbied ( ( 𝐴 No 𝐵 No ) → 𝐴 / 𝑥 𝐵 / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) = 𝐵 / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) )
110 simpr ( ( 𝐴 No 𝐵 No ) → 𝐵 No )
111 fveq2 ( 𝑦 = 𝐵 → ( L ‘ 𝑦 ) = ( L ‘ 𝐵 ) )
112 oveq2 ( 𝑦 = 𝐵 → ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) = ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) )
113 112 oveq1d ( 𝑦 = 𝐵 → ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) = ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) )
114 113 oveq1d ( 𝑦 = 𝐵 → ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) )
115 114 eqeq2d ( 𝑦 = 𝐵 → ( 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) ↔ 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) ) )
116 111 115 rexeqbidv ( 𝑦 = 𝐵 → ( ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) ↔ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) ) )
117 116 rexbidv ( 𝑦 = 𝐵 → ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) ↔ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) ) )
118 117 abbidv ( 𝑦 = 𝐵 → { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } = { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } )
119 fveq2 ( 𝑦 = 𝐵 → ( R ‘ 𝑦 ) = ( R ‘ 𝐵 ) )
120 oveq2 ( 𝑦 = 𝐵 → ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) = ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) )
121 120 oveq1d ( 𝑦 = 𝐵 → ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) = ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) )
122 121 oveq1d ( 𝑦 = 𝐵 → ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) )
123 122 eqeq2d ( 𝑦 = 𝐵 → ( 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) ↔ 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) ) )
124 119 123 rexeqbidv ( 𝑦 = 𝐵 → ( ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) ↔ ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) ) )
125 124 rexbidv ( 𝑦 = 𝐵 → ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) ) )
126 125 abbidv ( 𝑦 = 𝐵 → { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } = { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } )
127 118 126 uneq12d ( 𝑦 = 𝐵 → ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) = ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) )
128 oveq2 ( 𝑦 = 𝐵 → ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) = ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) )
129 128 oveq1d ( 𝑦 = 𝐵 → ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) = ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) )
130 129 oveq1d ( 𝑦 = 𝐵 → ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) )
131 130 eqeq2d ( 𝑦 = 𝐵 → ( 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) ↔ 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) ) )
132 119 131 rexeqbidv ( 𝑦 = 𝐵 → ( ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) ↔ ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) ) )
133 132 rexbidv ( 𝑦 = 𝐵 → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) ↔ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) ) )
134 133 abbidv ( 𝑦 = 𝐵 → { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } = { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } )
135 oveq2 ( 𝑦 = 𝐵 → ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) = ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) )
136 135 oveq1d ( 𝑦 = 𝐵 → ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) = ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) )
137 136 oveq1d ( 𝑦 = 𝐵 → ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) )
138 137 eqeq2d ( 𝑦 = 𝐵 → ( 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) ↔ 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) ) )
139 111 138 rexeqbidv ( 𝑦 = 𝐵 → ( ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) ↔ ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) ) )
140 139 rexbidv ( 𝑦 = 𝐵 → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) ↔ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) ) )
141 140 abbidv ( 𝑦 = 𝐵 → { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } = { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } )
142 134 141 uneq12d ( 𝑦 = 𝐵 → ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) = ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) )
143 127 142 oveq12d ( 𝑦 = 𝐵 → ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) )
144 143 adantl ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑦 = 𝐵 ) → ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) )
145 110 144 csbied ( ( 𝐴 No 𝐵 No ) → 𝐵 / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) )
146 elun1 ( 𝑝 ∈ ( L ‘ 𝐴 ) → 𝑝 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
147 146 ad2antrl ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝑝 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
148 elun1 ( 𝑝 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) → 𝑝 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
149 147 148 syl ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝑝 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
150 snidg ( 𝐵 No 𝐵 ∈ { 𝐵 } )
151 150 adantl ( ( 𝐴 No 𝐵 No ) → 𝐵 ∈ { 𝐵 } )
152 elun2 ( 𝐵 ∈ { 𝐵 } → 𝐵 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
153 151 152 syl ( ( 𝐴 No 𝐵 No ) → 𝐵 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
154 153 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝐵 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
155 149 154 opelxpd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝑝 , 𝐵 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) )
156 leftirr ¬ 𝐴 ∈ ( L ‘ 𝐴 )
157 eleq1 ( 𝑝 = 𝐴 → ( 𝑝 ∈ ( L ‘ 𝐴 ) ↔ 𝐴 ∈ ( L ‘ 𝐴 ) ) )
158 156 157 mtbiri ( 𝑝 = 𝐴 → ¬ 𝑝 ∈ ( L ‘ 𝐴 ) )
159 158 necon2ai ( 𝑝 ∈ ( L ‘ 𝐴 ) → 𝑝𝐴 )
160 159 ad2antrl ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝑝𝐴 )
161 160 orcd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑝𝐴𝐵𝐵 ) )
162 vex 𝑝 ∈ V
163 opthneg ( ( 𝑝 ∈ V ∧ 𝐵 No ) → ( ⟨ 𝑝 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑝𝐴𝐵𝐵 ) ) )
164 162 163 mpan ( 𝐵 No → ( ⟨ 𝑝 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑝𝐴𝐵𝐵 ) ) )
165 164 ad2antlr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( ⟨ 𝑝 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑝𝐴𝐵𝐵 ) ) )
166 161 165 mpbird ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝑝 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
167 opex 𝑝 , 𝐵 ⟩ ∈ V
168 167 elsn ( ⟨ 𝑝 , 𝐵 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑝 , 𝐵 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
169 168 necon3bbii ( ¬ ⟨ 𝑝 , 𝐵 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑝 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
170 166 169 sylibr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ¬ ⟨ 𝑝 , 𝐵 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } )
171 155 170 eldifd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝑝 , 𝐵 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
172 171 fvresd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑝 , 𝐵 ⟩ ) = ( ·s ‘ ⟨ 𝑝 , 𝐵 ⟩ ) )
173 df-ov ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) = ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑝 , 𝐵 ⟩ )
174 df-ov ( 𝑝 ·s 𝐵 ) = ( ·s ‘ ⟨ 𝑝 , 𝐵 ⟩ )
175 172 173 174 3eqtr4g ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) = ( 𝑝 ·s 𝐵 ) )
176 snidg ( 𝐴 No 𝐴 ∈ { 𝐴 } )
177 176 adantr ( ( 𝐴 No 𝐵 No ) → 𝐴 ∈ { 𝐴 } )
178 elun2 ( 𝐴 ∈ { 𝐴 } → 𝐴 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
179 177 178 syl ( ( 𝐴 No 𝐵 No ) → 𝐴 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
180 179 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝐴 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
181 elun1 ( 𝑞 ∈ ( L ‘ 𝐵 ) → 𝑞 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) )
182 181 ad2antll ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝑞 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) )
183 elun1 ( 𝑞 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) → 𝑞 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
184 182 183 syl ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝑞 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
185 180 184 opelxpd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝐴 , 𝑞 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) )
186 leftirr ¬ 𝐵 ∈ ( L ‘ 𝐵 )
187 eleq1 ( 𝑞 = 𝐵 → ( 𝑞 ∈ ( L ‘ 𝐵 ) ↔ 𝐵 ∈ ( L ‘ 𝐵 ) ) )
188 186 187 mtbiri ( 𝑞 = 𝐵 → ¬ 𝑞 ∈ ( L ‘ 𝐵 ) )
189 188 necon2ai ( 𝑞 ∈ ( L ‘ 𝐵 ) → 𝑞𝐵 )
190 189 ad2antll ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → 𝑞𝐵 )
191 190 olcd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝐴𝐴𝑞𝐵 ) )
192 opthneg ( ( 𝐴 No 𝑞 ∈ V ) → ( ⟨ 𝐴 , 𝑞 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐴𝐴𝑞𝐵 ) ) )
193 192 elvd ( 𝐴 No → ( ⟨ 𝐴 , 𝑞 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐴𝐴𝑞𝐵 ) ) )
194 193 ad2antrr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( ⟨ 𝐴 , 𝑞 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐴𝐴𝑞𝐵 ) ) )
195 191 194 mpbird ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝐴 , 𝑞 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
196 opex 𝐴 , 𝑞 ⟩ ∈ V
197 196 elsn ( ⟨ 𝐴 , 𝑞 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝐴 , 𝑞 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
198 197 necon3bbii ( ¬ ⟨ 𝐴 , 𝑞 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝐴 , 𝑞 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
199 195 198 sylibr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ¬ ⟨ 𝐴 , 𝑞 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } )
200 185 199 eldifd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝐴 , 𝑞 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
201 200 fvresd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝐴 , 𝑞 ⟩ ) = ( ·s ‘ ⟨ 𝐴 , 𝑞 ⟩ ) )
202 df-ov ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) = ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝐴 , 𝑞 ⟩ )
203 df-ov ( 𝐴 ·s 𝑞 ) = ( ·s ‘ ⟨ 𝐴 , 𝑞 ⟩ )
204 201 202 203 3eqtr4g ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) = ( 𝐴 ·s 𝑞 ) )
205 175 204 oveq12d ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) = ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) )
206 149 184 opelxpd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝑝 , 𝑞 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) )
207 190 olcd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑝𝐴𝑞𝐵 ) )
208 vex 𝑞 ∈ V
209 162 208 opthne ( ⟨ 𝑝 , 𝑞 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑝𝐴𝑞𝐵 ) )
210 207 209 sylibr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝑝 , 𝑞 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
211 opex 𝑝 , 𝑞 ⟩ ∈ V
212 211 elsn ( ⟨ 𝑝 , 𝑞 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑝 , 𝑞 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
213 212 necon3bbii ( ¬ ⟨ 𝑝 , 𝑞 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑝 , 𝑞 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
214 210 213 sylibr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ¬ ⟨ 𝑝 , 𝑞 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } )
215 206 214 eldifd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝑝 , 𝑞 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
216 215 fvresd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑝 , 𝑞 ⟩ ) = ( ·s ‘ ⟨ 𝑝 , 𝑞 ⟩ ) )
217 df-ov ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) = ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑝 , 𝑞 ⟩ )
218 df-ov ( 𝑝 ·s 𝑞 ) = ( ·s ‘ ⟨ 𝑝 , 𝑞 ⟩ )
219 216 217 218 3eqtr4g ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) = ( 𝑝 ·s 𝑞 ) )
220 205 219 oveq12d ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) )
221 220 eqeq2d ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑝 ∈ ( L ‘ 𝐴 ) ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) ↔ 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) )
222 221 2rexbidva ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) ↔ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) )
223 222 abbidv ( ( 𝐴 No 𝐵 No ) → { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } = { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } )
224 elun2 ( 𝑟 ∈ ( R ‘ 𝐴 ) → 𝑟 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
225 224 ad2antrl ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝑟 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
226 elun1 ( 𝑟 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) → 𝑟 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
227 225 226 syl ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝑟 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
228 153 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝐵 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
229 227 228 opelxpd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝑟 , 𝐵 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) )
230 rightirr ¬ 𝐴 ∈ ( R ‘ 𝐴 )
231 eleq1 ( 𝑟 = 𝐴 → ( 𝑟 ∈ ( R ‘ 𝐴 ) ↔ 𝐴 ∈ ( R ‘ 𝐴 ) ) )
232 230 231 mtbiri ( 𝑟 = 𝐴 → ¬ 𝑟 ∈ ( R ‘ 𝐴 ) )
233 232 necon2ai ( 𝑟 ∈ ( R ‘ 𝐴 ) → 𝑟𝐴 )
234 233 ad2antrl ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝑟𝐴 )
235 234 orcd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑟𝐴𝐵𝐵 ) )
236 vex 𝑟 ∈ V
237 opthneg ( ( 𝑟 ∈ V ∧ 𝐵 No ) → ( ⟨ 𝑟 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑟𝐴𝐵𝐵 ) ) )
238 236 237 mpan ( 𝐵 No → ( ⟨ 𝑟 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑟𝐴𝐵𝐵 ) ) )
239 238 ad2antlr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( ⟨ 𝑟 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑟𝐴𝐵𝐵 ) ) )
240 235 239 mpbird ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝑟 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
241 opex 𝑟 , 𝐵 ⟩ ∈ V
242 241 elsn ( ⟨ 𝑟 , 𝐵 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑟 , 𝐵 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
243 242 necon3bbii ( ¬ ⟨ 𝑟 , 𝐵 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑟 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
244 240 243 sylibr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ¬ ⟨ 𝑟 , 𝐵 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } )
245 229 244 eldifd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝑟 , 𝐵 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
246 245 fvresd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑟 , 𝐵 ⟩ ) = ( ·s ‘ ⟨ 𝑟 , 𝐵 ⟩ ) )
247 df-ov ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) = ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑟 , 𝐵 ⟩ )
248 df-ov ( 𝑟 ·s 𝐵 ) = ( ·s ‘ ⟨ 𝑟 , 𝐵 ⟩ )
249 246 247 248 3eqtr4g ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) = ( 𝑟 ·s 𝐵 ) )
250 179 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝐴 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
251 elun2 ( 𝑠 ∈ ( R ‘ 𝐵 ) → 𝑠 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) )
252 251 ad2antll ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝑠 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) )
253 elun1 ( 𝑠 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) → 𝑠 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
254 252 253 syl ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝑠 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
255 250 254 opelxpd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝐴 , 𝑠 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) )
256 rightirr ¬ 𝐵 ∈ ( R ‘ 𝐵 )
257 eleq1 ( 𝑠 = 𝐵 → ( 𝑠 ∈ ( R ‘ 𝐵 ) ↔ 𝐵 ∈ ( R ‘ 𝐵 ) ) )
258 256 257 mtbiri ( 𝑠 = 𝐵 → ¬ 𝑠 ∈ ( R ‘ 𝐵 ) )
259 258 necon2ai ( 𝑠 ∈ ( R ‘ 𝐵 ) → 𝑠𝐵 )
260 259 ad2antll ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → 𝑠𝐵 )
261 260 olcd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝐴𝐴𝑠𝐵 ) )
262 opthneg ( ( 𝐴 No 𝑠 ∈ V ) → ( ⟨ 𝐴 , 𝑠 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐴𝐴𝑠𝐵 ) ) )
263 262 elvd ( 𝐴 No → ( ⟨ 𝐴 , 𝑠 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐴𝐴𝑠𝐵 ) ) )
264 263 ad2antrr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( ⟨ 𝐴 , 𝑠 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐴𝐴𝑠𝐵 ) ) )
265 261 264 mpbird ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝐴 , 𝑠 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
266 opex 𝐴 , 𝑠 ⟩ ∈ V
267 266 elsn ( ⟨ 𝐴 , 𝑠 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝐴 , 𝑠 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
268 267 necon3bbii ( ¬ ⟨ 𝐴 , 𝑠 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝐴 , 𝑠 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
269 265 268 sylibr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ¬ ⟨ 𝐴 , 𝑠 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } )
270 255 269 eldifd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝐴 , 𝑠 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
271 270 fvresd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝐴 , 𝑠 ⟩ ) = ( ·s ‘ ⟨ 𝐴 , 𝑠 ⟩ ) )
272 df-ov ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) = ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝐴 , 𝑠 ⟩ )
273 df-ov ( 𝐴 ·s 𝑠 ) = ( ·s ‘ ⟨ 𝐴 , 𝑠 ⟩ )
274 271 272 273 3eqtr4g ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) = ( 𝐴 ·s 𝑠 ) )
275 249 274 oveq12d ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) = ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) )
276 227 254 opelxpd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝑟 , 𝑠 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) )
277 260 olcd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑟𝐴𝑠𝐵 ) )
278 vex 𝑠 ∈ V
279 236 278 opthne ( ⟨ 𝑟 , 𝑠 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑟𝐴𝑠𝐵 ) )
280 277 279 sylibr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝑟 , 𝑠 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
281 opex 𝑟 , 𝑠 ⟩ ∈ V
282 281 elsn ( ⟨ 𝑟 , 𝑠 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑟 , 𝑠 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
283 282 necon3bbii ( ¬ ⟨ 𝑟 , 𝑠 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑟 , 𝑠 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
284 280 283 sylibr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ¬ ⟨ 𝑟 , 𝑠 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } )
285 276 284 eldifd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝑟 , 𝑠 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
286 285 fvresd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑟 , 𝑠 ⟩ ) = ( ·s ‘ ⟨ 𝑟 , 𝑠 ⟩ ) )
287 df-ov ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) = ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑟 , 𝑠 ⟩ )
288 df-ov ( 𝑟 ·s 𝑠 ) = ( ·s ‘ ⟨ 𝑟 , 𝑠 ⟩ )
289 286 287 288 3eqtr4g ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) = ( 𝑟 ·s 𝑠 ) )
290 275 289 oveq12d ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
291 290 eqeq2d ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝑠 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) ↔ 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) )
292 291 2rexbidva ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) )
293 292 abbidv ( ( 𝐴 No 𝐵 No ) → { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } = { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } )
294 223 293 uneq12d ( ( 𝐴 No 𝐵 No ) → ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) = ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) )
295 elun1 ( 𝑡 ∈ ( L ‘ 𝐴 ) → 𝑡 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
296 295 ad2antrl ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝑡 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
297 elun1 ( 𝑡 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) → 𝑡 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
298 296 297 syl ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝑡 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
299 153 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝐵 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
300 298 299 opelxpd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝑡 , 𝐵 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) )
301 eleq1 ( 𝑡 = 𝐴 → ( 𝑡 ∈ ( L ‘ 𝐴 ) ↔ 𝐴 ∈ ( L ‘ 𝐴 ) ) )
302 156 301 mtbiri ( 𝑡 = 𝐴 → ¬ 𝑡 ∈ ( L ‘ 𝐴 ) )
303 302 necon2ai ( 𝑡 ∈ ( L ‘ 𝐴 ) → 𝑡𝐴 )
304 303 ad2antrl ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝑡𝐴 )
305 304 orcd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑡𝐴𝐵𝐵 ) )
306 vex 𝑡 ∈ V
307 opthneg ( ( 𝑡 ∈ V ∧ 𝐵 No ) → ( ⟨ 𝑡 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑡𝐴𝐵𝐵 ) ) )
308 306 307 mpan ( 𝐵 No → ( ⟨ 𝑡 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑡𝐴𝐵𝐵 ) ) )
309 308 ad2antlr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( ⟨ 𝑡 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑡𝐴𝐵𝐵 ) ) )
310 305 309 mpbird ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝑡 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
311 opex 𝑡 , 𝐵 ⟩ ∈ V
312 311 elsn ( ⟨ 𝑡 , 𝐵 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑡 , 𝐵 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
313 312 necon3bbii ( ¬ ⟨ 𝑡 , 𝐵 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑡 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
314 310 313 sylibr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ¬ ⟨ 𝑡 , 𝐵 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } )
315 300 314 eldifd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝑡 , 𝐵 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
316 315 fvresd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑡 , 𝐵 ⟩ ) = ( ·s ‘ ⟨ 𝑡 , 𝐵 ⟩ ) )
317 df-ov ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) = ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑡 , 𝐵 ⟩ )
318 df-ov ( 𝑡 ·s 𝐵 ) = ( ·s ‘ ⟨ 𝑡 , 𝐵 ⟩ )
319 316 317 318 3eqtr4g ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) = ( 𝑡 ·s 𝐵 ) )
320 179 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝐴 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
321 elun2 ( 𝑢 ∈ ( R ‘ 𝐵 ) → 𝑢 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) )
322 321 ad2antll ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝑢 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) )
323 elun1 ( 𝑢 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) → 𝑢 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
324 322 323 syl ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝑢 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
325 320 324 opelxpd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝐴 , 𝑢 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) )
326 eleq1 ( 𝑢 = 𝐵 → ( 𝑢 ∈ ( R ‘ 𝐵 ) ↔ 𝐵 ∈ ( R ‘ 𝐵 ) ) )
327 256 326 mtbiri ( 𝑢 = 𝐵 → ¬ 𝑢 ∈ ( R ‘ 𝐵 ) )
328 327 necon2ai ( 𝑢 ∈ ( R ‘ 𝐵 ) → 𝑢𝐵 )
329 328 ad2antll ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → 𝑢𝐵 )
330 329 olcd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝐴𝐴𝑢𝐵 ) )
331 opthneg ( ( 𝐴 No 𝑢 ∈ V ) → ( ⟨ 𝐴 , 𝑢 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐴𝐴𝑢𝐵 ) ) )
332 331 elvd ( 𝐴 No → ( ⟨ 𝐴 , 𝑢 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐴𝐴𝑢𝐵 ) ) )
333 332 ad2antrr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( ⟨ 𝐴 , 𝑢 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐴𝐴𝑢𝐵 ) ) )
334 330 333 mpbird ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝐴 , 𝑢 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
335 opex 𝐴 , 𝑢 ⟩ ∈ V
336 335 elsn ( ⟨ 𝐴 , 𝑢 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝐴 , 𝑢 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
337 336 necon3bbii ( ¬ ⟨ 𝐴 , 𝑢 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝐴 , 𝑢 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
338 334 337 sylibr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ¬ ⟨ 𝐴 , 𝑢 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } )
339 325 338 eldifd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝐴 , 𝑢 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
340 339 fvresd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝐴 , 𝑢 ⟩ ) = ( ·s ‘ ⟨ 𝐴 , 𝑢 ⟩ ) )
341 df-ov ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) = ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝐴 , 𝑢 ⟩ )
342 df-ov ( 𝐴 ·s 𝑢 ) = ( ·s ‘ ⟨ 𝐴 , 𝑢 ⟩ )
343 340 341 342 3eqtr4g ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) = ( 𝐴 ·s 𝑢 ) )
344 319 343 oveq12d ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) = ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) )
345 298 324 opelxpd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝑡 , 𝑢 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) )
346 329 olcd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑡𝐴𝑢𝐵 ) )
347 vex 𝑢 ∈ V
348 306 347 opthne ( ⟨ 𝑡 , 𝑢 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑡𝐴𝑢𝐵 ) )
349 346 348 sylibr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝑡 , 𝑢 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
350 opex 𝑡 , 𝑢 ⟩ ∈ V
351 350 elsn ( ⟨ 𝑡 , 𝑢 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑡 , 𝑢 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
352 351 necon3bbii ( ¬ ⟨ 𝑡 , 𝑢 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑡 , 𝑢 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
353 349 352 sylibr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ¬ ⟨ 𝑡 , 𝑢 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } )
354 345 353 eldifd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ⟨ 𝑡 , 𝑢 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
355 354 fvresd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑡 , 𝑢 ⟩ ) = ( ·s ‘ ⟨ 𝑡 , 𝑢 ⟩ ) )
356 df-ov ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) = ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑡 , 𝑢 ⟩ )
357 df-ov ( 𝑡 ·s 𝑢 ) = ( ·s ‘ ⟨ 𝑡 , 𝑢 ⟩ )
358 355 356 357 3eqtr4g ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) = ( 𝑡 ·s 𝑢 ) )
359 344 358 oveq12d ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) )
360 359 eqeq2d ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑡 ∈ ( L ‘ 𝐴 ) ∧ 𝑢 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) ↔ 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) )
361 360 2rexbidva ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) ↔ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) )
362 361 abbidv ( ( 𝐴 No 𝐵 No ) → { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } = { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } )
363 elun2 ( 𝑣 ∈ ( R ‘ 𝐴 ) → 𝑣 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
364 363 ad2antrl ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝑣 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
365 elun1 ( 𝑣 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) → 𝑣 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
366 364 365 syl ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝑣 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
367 153 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝐵 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
368 366 367 opelxpd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝑣 , 𝐵 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) )
369 eleq1 ( 𝑣 = 𝐴 → ( 𝑣 ∈ ( R ‘ 𝐴 ) ↔ 𝐴 ∈ ( R ‘ 𝐴 ) ) )
370 230 369 mtbiri ( 𝑣 = 𝐴 → ¬ 𝑣 ∈ ( R ‘ 𝐴 ) )
371 370 necon2ai ( 𝑣 ∈ ( R ‘ 𝐴 ) → 𝑣𝐴 )
372 371 ad2antrl ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝑣𝐴 )
373 372 orcd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑣𝐴𝐵𝐵 ) )
374 vex 𝑣 ∈ V
375 opthneg ( ( 𝑣 ∈ V ∧ 𝐵 No ) → ( ⟨ 𝑣 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑣𝐴𝐵𝐵 ) ) )
376 374 375 mpan ( 𝐵 No → ( ⟨ 𝑣 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑣𝐴𝐵𝐵 ) ) )
377 376 ad2antlr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( ⟨ 𝑣 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑣𝐴𝐵𝐵 ) ) )
378 373 377 mpbird ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝑣 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
379 opex 𝑣 , 𝐵 ⟩ ∈ V
380 379 elsn ( ⟨ 𝑣 , 𝐵 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑣 , 𝐵 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
381 380 necon3bbii ( ¬ ⟨ 𝑣 , 𝐵 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑣 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
382 378 381 sylibr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ¬ ⟨ 𝑣 , 𝐵 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } )
383 368 382 eldifd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝑣 , 𝐵 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
384 383 fvresd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑣 , 𝐵 ⟩ ) = ( ·s ‘ ⟨ 𝑣 , 𝐵 ⟩ ) )
385 df-ov ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) = ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑣 , 𝐵 ⟩ )
386 df-ov ( 𝑣 ·s 𝐵 ) = ( ·s ‘ ⟨ 𝑣 , 𝐵 ⟩ )
387 384 385 386 3eqtr4g ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) = ( 𝑣 ·s 𝐵 ) )
388 179 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝐴 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
389 elun1 ( 𝑤 ∈ ( L ‘ 𝐵 ) → 𝑤 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) )
390 389 ad2antll ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝑤 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) )
391 elun1 ( 𝑤 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) → 𝑤 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
392 390 391 syl ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝑤 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
393 388 392 opelxpd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝐴 , 𝑤 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) )
394 eleq1 ( 𝑤 = 𝐵 → ( 𝑤 ∈ ( L ‘ 𝐵 ) ↔ 𝐵 ∈ ( L ‘ 𝐵 ) ) )
395 186 394 mtbiri ( 𝑤 = 𝐵 → ¬ 𝑤 ∈ ( L ‘ 𝐵 ) )
396 395 necon2ai ( 𝑤 ∈ ( L ‘ 𝐵 ) → 𝑤𝐵 )
397 396 ad2antll ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → 𝑤𝐵 )
398 397 olcd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝐴𝐴𝑤𝐵 ) )
399 opthneg ( ( 𝐴 No 𝑤 ∈ V ) → ( ⟨ 𝐴 , 𝑤 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐴𝐴𝑤𝐵 ) ) )
400 399 elvd ( 𝐴 No → ( ⟨ 𝐴 , 𝑤 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐴𝐴𝑤𝐵 ) ) )
401 400 ad2antrr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( ⟨ 𝐴 , 𝑤 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐴𝐴𝑤𝐵 ) ) )
402 398 401 mpbird ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝐴 , 𝑤 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
403 opex 𝐴 , 𝑤 ⟩ ∈ V
404 403 elsn ( ⟨ 𝐴 , 𝑤 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝐴 , 𝑤 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
405 404 necon3bbii ( ¬ ⟨ 𝐴 , 𝑤 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝐴 , 𝑤 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
406 402 405 sylibr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ¬ ⟨ 𝐴 , 𝑤 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } )
407 393 406 eldifd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝐴 , 𝑤 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
408 407 fvresd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝐴 , 𝑤 ⟩ ) = ( ·s ‘ ⟨ 𝐴 , 𝑤 ⟩ ) )
409 df-ov ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) = ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝐴 , 𝑤 ⟩ )
410 df-ov ( 𝐴 ·s 𝑤 ) = ( ·s ‘ ⟨ 𝐴 , 𝑤 ⟩ )
411 408 409 410 3eqtr4g ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) = ( 𝐴 ·s 𝑤 ) )
412 387 411 oveq12d ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) = ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) )
413 366 392 opelxpd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝑣 , 𝑤 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) )
414 397 olcd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑣𝐴𝑤𝐵 ) )
415 vex 𝑤 ∈ V
416 374 415 opthne ( ⟨ 𝑣 , 𝑤 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑣𝐴𝑤𝐵 ) )
417 414 416 sylibr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝑣 , 𝑤 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
418 opex 𝑣 , 𝑤 ⟩ ∈ V
419 418 elsn ( ⟨ 𝑣 , 𝑤 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
420 419 necon3bbii ( ¬ ⟨ 𝑣 , 𝑤 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑣 , 𝑤 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
421 417 420 sylibr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ¬ ⟨ 𝑣 , 𝑤 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } )
422 413 421 eldifd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ⟨ 𝑣 , 𝑤 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
423 422 fvresd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑣 , 𝑤 ⟩ ) = ( ·s ‘ ⟨ 𝑣 , 𝑤 ⟩ ) )
424 df-ov ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) = ( ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑣 , 𝑤 ⟩ )
425 df-ov ( 𝑣 ·s 𝑤 ) = ( ·s ‘ ⟨ 𝑣 , 𝑤 ⟩ )
426 423 424 425 3eqtr4g ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) = ( 𝑣 ·s 𝑤 ) )
427 412 426 oveq12d ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) )
428 427 eqeq2d ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑣 ∈ ( R ‘ 𝐴 ) ∧ 𝑤 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) ↔ 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) )
429 428 2rexbidva ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) ↔ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) )
430 429 abbidv ( ( 𝐴 No 𝐵 No ) → { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } = { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } )
431 362 430 uneq12d ( ( 𝐴 No 𝐵 No ) → ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) = ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) )
432 294 431 oveq12d ( ( 𝐴 No 𝐵 No ) → ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) +s ( 𝐴 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )
433 109 145 432 3eqtrd ( ( 𝐴 No 𝐵 No ) → 𝐴 / 𝑥 𝐵 / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )
434 69 72 433 3eqtrd ( ( 𝐴 No 𝐵 No ) → ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑥 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) -s ( 𝑝 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) -s ( 𝑟 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) -s ( 𝑡 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑦 ) +s ( 𝑥 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) -s ( 𝑣 ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑤 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )
435 67 434 eqtrid ( ( 𝐴 No 𝐵 No ) → ( ⟨ 𝐴 , 𝐵 ⟩ ( 𝑧 ∈ V , 𝑚 ∈ V ↦ ( 1st𝑧 ) / 𝑥 ( 2nd𝑧 ) / 𝑦 ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) ) ( ·s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )
436 2 435 eqtrd ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )