Metamath Proof Explorer


Theorem mulsval2

Description: The value of surreal multiplication, expressed with fewer distinct variable conditions. (Contributed by Scott Fenton, 8-Mar-2025)

Ref Expression
Assertion mulsval2 ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )

Proof

Step Hyp Ref Expression
1 mulsval ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑖 ·s 𝑘 ) ) } ) |s ( { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) } ∪ { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) )
2 mulsval2lem { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } = { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) }
3 mulsval2lem { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } = { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑖 ·s 𝑘 ) ) }
4 2 3 uneq12i ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) = ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑖 ·s 𝑘 ) ) } )
5 mulsval2lem { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } = { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) }
6 mulsval2lem { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } = { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) }
7 5 6 uneq12i ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) = ( { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) } ∪ { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } )
8 4 7 oveq12i ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) = ( ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑖 ·s 𝑘 ) ) } ) |s ( { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) } ∪ { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) )
9 1 8 eqtr4di ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )