Step |
Hyp |
Ref |
Expression |
1 |
|
mulsval |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑖 ·s 𝑘 ) ) } ) |s ( { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) } ∪ { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) ) |
2 |
|
mulsval2lem |
⊢ { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } = { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } |
3 |
|
mulsval2lem |
⊢ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } = { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑖 ·s 𝑘 ) ) } |
4 |
2 3
|
uneq12i |
⊢ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) = ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑖 ·s 𝑘 ) ) } ) |
5 |
|
mulsval2lem |
⊢ { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } = { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) } |
6 |
|
mulsval2lem |
⊢ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } = { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } |
7 |
5 6
|
uneq12i |
⊢ ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) = ( { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) } ∪ { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) |
8 |
4 7
|
oveq12i |
⊢ ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) = ( ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑖 ·s 𝑘 ) ) } ) |s ( { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) } ∪ { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) |
9 |
1 8
|
eqtr4di |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ) |