Metamath Proof Explorer


Theorem mulsval2lem

Description: Lemma for mulsval2 . Change bound variables in one of the cases. (Contributed by Scott Fenton, 8-Mar-2025)

Ref Expression
Assertion mulsval2lem { 𝑎 ∣ ∃ 𝑝𝑋𝑞𝑌 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } = { 𝑏 ∣ ∃ 𝑟𝑋𝑠𝑌 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) }

Proof

Step Hyp Ref Expression
1 eqeq1 ( 𝑎 = 𝑏 → ( 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ 𝑏 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) )
2 1 2rexbidv ( 𝑎 = 𝑏 → ( ∃ 𝑝𝑋𝑞𝑌 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ∃ 𝑝𝑋𝑞𝑌 𝑏 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) )
3 oveq1 ( 𝑝 = 𝑟 → ( 𝑝 ·s 𝐵 ) = ( 𝑟 ·s 𝐵 ) )
4 3 oveq1d ( 𝑝 = 𝑟 → ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) = ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) )
5 oveq1 ( 𝑝 = 𝑟 → ( 𝑝 ·s 𝑞 ) = ( 𝑟 ·s 𝑞 ) )
6 4 5 oveq12d ( 𝑝 = 𝑟 → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑟 ·s 𝑞 ) ) )
7 6 eqeq2d ( 𝑝 = 𝑟 → ( 𝑏 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑟 ·s 𝑞 ) ) ) )
8 oveq2 ( 𝑞 = 𝑠 → ( 𝐴 ·s 𝑞 ) = ( 𝐴 ·s 𝑠 ) )
9 8 oveq2d ( 𝑞 = 𝑠 → ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) = ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) )
10 oveq2 ( 𝑞 = 𝑠 → ( 𝑟 ·s 𝑞 ) = ( 𝑟 ·s 𝑠 ) )
11 9 10 oveq12d ( 𝑞 = 𝑠 → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑟 ·s 𝑞 ) ) = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
12 11 eqeq2d ( 𝑞 = 𝑠 → ( 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑟 ·s 𝑞 ) ) ↔ 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) )
13 7 12 cbvrex2vw ( ∃ 𝑝𝑋𝑞𝑌 𝑏 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ∃ 𝑟𝑋𝑠𝑌 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) )
14 2 13 bitrdi ( 𝑎 = 𝑏 → ( ∃ 𝑝𝑋𝑞𝑌 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ∃ 𝑟𝑋𝑠𝑌 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) )
15 14 cbvabv { 𝑎 ∣ ∃ 𝑝𝑋𝑞𝑌 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } = { 𝑏 ∣ ∃ 𝑟𝑋𝑠𝑌 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) }