Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ 𝑏 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
2 |
1
|
2rexbidv |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑝 ∈ 𝑋 ∃ 𝑞 ∈ 𝑌 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ∃ 𝑝 ∈ 𝑋 ∃ 𝑞 ∈ 𝑌 𝑏 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
3 |
|
oveq1 |
⊢ ( 𝑝 = 𝑟 → ( 𝑝 ·s 𝐵 ) = ( 𝑟 ·s 𝐵 ) ) |
4 |
3
|
oveq1d |
⊢ ( 𝑝 = 𝑟 → ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) = ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) ) |
5 |
|
oveq1 |
⊢ ( 𝑝 = 𝑟 → ( 𝑝 ·s 𝑞 ) = ( 𝑟 ·s 𝑞 ) ) |
6 |
4 5
|
oveq12d |
⊢ ( 𝑝 = 𝑟 → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑟 ·s 𝑞 ) ) ) |
7 |
6
|
eqeq2d |
⊢ ( 𝑝 = 𝑟 → ( 𝑏 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑟 ·s 𝑞 ) ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑞 = 𝑠 → ( 𝐴 ·s 𝑞 ) = ( 𝐴 ·s 𝑠 ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝑞 = 𝑠 → ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) = ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑞 = 𝑠 → ( 𝑟 ·s 𝑞 ) = ( 𝑟 ·s 𝑠 ) ) |
11 |
9 10
|
oveq12d |
⊢ ( 𝑞 = 𝑠 → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑟 ·s 𝑞 ) ) = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
12 |
11
|
eqeq2d |
⊢ ( 𝑞 = 𝑠 → ( 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑟 ·s 𝑞 ) ) ↔ 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
13 |
7 12
|
cbvrex2vw |
⊢ ( ∃ 𝑝 ∈ 𝑋 ∃ 𝑞 ∈ 𝑌 𝑏 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ∃ 𝑟 ∈ 𝑋 ∃ 𝑠 ∈ 𝑌 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
14 |
2 13
|
bitrdi |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑝 ∈ 𝑋 ∃ 𝑞 ∈ 𝑌 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ∃ 𝑟 ∈ 𝑋 ∃ 𝑠 ∈ 𝑌 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
15 |
14
|
cbvabv |
⊢ { 𝑎 ∣ ∃ 𝑝 ∈ 𝑋 ∃ 𝑞 ∈ 𝑌 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } = { 𝑏 ∣ ∃ 𝑟 ∈ 𝑋 ∃ 𝑠 ∈ 𝑌 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } |