Step |
Hyp |
Ref |
Expression |
1 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
3 |
|
zsqcl |
⊢ ( 𝑝 ∈ ℤ → ( 𝑝 ↑ 2 ) ∈ ℤ ) |
4 |
2 3
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ 2 ) ∈ ℤ ) |
5 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ ) |
7 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
8 |
7
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℤ ) |
9 |
|
dvdsmultr1 |
⊢ ( ( ( 𝑝 ↑ 2 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑝 ↑ 2 ) ∥ 𝐴 → ( 𝑝 ↑ 2 ) ∥ ( 𝐴 · 𝐵 ) ) ) |
10 |
4 6 8 9
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ↑ 2 ) ∥ 𝐴 → ( 𝑝 ↑ 2 ) ∥ ( 𝐴 · 𝐵 ) ) ) |
11 |
10
|
reximdva |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ ( 𝐴 · 𝐵 ) ) ) |
12 |
|
isnsqf |
⊢ ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( μ ‘ 𝐴 ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
14 |
|
nnmulcl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 · 𝐵 ) ∈ ℕ ) |
15 |
|
isnsqf |
⊢ ( ( 𝐴 · 𝐵 ) ∈ ℕ → ( ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ ( 𝐴 · 𝐵 ) ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ ( 𝐴 · 𝐵 ) ) ) |
17 |
11 13 16
|
3imtr4d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( μ ‘ 𝐴 ) = 0 → ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 ) ) |
18 |
17
|
imp |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 ) |