| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmz | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℤ ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑝  ∈  ℙ )  →  𝑝  ∈  ℤ ) | 
						
							| 3 |  | zsqcl | ⊢ ( 𝑝  ∈  ℤ  →  ( 𝑝 ↑ 2 )  ∈  ℤ ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝 ↑ 2 )  ∈  ℤ ) | 
						
							| 5 |  | nnz | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℤ ) | 
						
							| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑝  ∈  ℙ )  →  𝐴  ∈  ℤ ) | 
						
							| 7 |  | nnz | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℤ ) | 
						
							| 8 | 7 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑝  ∈  ℙ )  →  𝐵  ∈  ℤ ) | 
						
							| 9 |  | dvdsmultr1 | ⊢ ( ( ( 𝑝 ↑ 2 )  ∈  ℤ  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝑝 ↑ 2 )  ∥  𝐴  →  ( 𝑝 ↑ 2 )  ∥  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 10 | 4 6 8 9 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑝 ↑ 2 )  ∥  𝐴  →  ( 𝑝 ↑ 2 )  ∥  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 11 | 10 | reximdva | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴  →  ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 12 |  | isnsqf | ⊢ ( 𝐴  ∈  ℕ  →  ( ( μ ‘ 𝐴 )  =  0  ↔  ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( μ ‘ 𝐴 )  =  0  ↔  ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 ) ) | 
						
							| 14 |  | nnmulcl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  ·  𝐵 )  ∈  ℕ ) | 
						
							| 15 |  | isnsqf | ⊢ ( ( 𝐴  ·  𝐵 )  ∈  ℕ  →  ( ( μ ‘ ( 𝐴  ·  𝐵 ) )  =  0  ↔  ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( μ ‘ ( 𝐴  ·  𝐵 ) )  =  0  ↔  ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 17 | 11 13 16 | 3imtr4d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( μ ‘ 𝐴 )  =  0  →  ( μ ‘ ( 𝐴  ·  𝐵 ) )  =  0 ) ) | 
						
							| 18 | 17 | imp | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  ∧  ( μ ‘ 𝐴 )  =  0 )  →  ( μ ‘ ( 𝐴  ·  𝐵 ) )  =  0 ) |