| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							muval | 
							⊢ ( 𝐴  ∈  ℕ  →  ( μ ‘ 𝐴 )  =  if ( ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 ,  0 ,  ( - 1 ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  →  ( μ ‘ 𝐴 )  =  if ( ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 ,  0 ,  ( - 1 ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							exprmfct | 
							⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  ∃ 𝑝  ∈  ℙ 𝑝  ∥  𝑃 )  | 
						
						
							| 4 | 
							
								3
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  →  ∃ 𝑝  ∈  ℙ 𝑝  ∥  𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							prmnn | 
							⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℕ )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  ∧  𝑝  ∈  ℙ )  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eluz2b2 | 
							⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑃  ∈  ℕ  ∧  1  <  𝑃 ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylib | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  ∧  𝑝  ∈  ℙ )  →  ( 𝑃  ∈  ℕ  ∧  1  <  𝑃 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							simpld | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  ∧  𝑝  ∈  ℙ )  →  𝑃  ∈  ℕ )  | 
						
						
							| 10 | 
							
								
							 | 
							dvdssqlem | 
							⊢ ( ( 𝑝  ∈  ℕ  ∧  𝑃  ∈  ℕ )  →  ( 𝑝  ∥  𝑃  ↔  ( 𝑝 ↑ 2 )  ∥  ( 𝑃 ↑ 2 ) ) )  | 
						
						
							| 11 | 
							
								5 9 10
							 | 
							syl2an2 | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  ∥  𝑃  ↔  ( 𝑝 ↑ 2 )  ∥  ( 𝑃 ↑ 2 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  ∧  𝑝  ∈  ℙ )  →  ( 𝑃 ↑ 2 )  ∥  𝐴 )  | 
						
						
							| 13 | 
							
								
							 | 
							prmz | 
							⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℤ )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantl | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  ∧  𝑝  ∈  ℙ )  →  𝑝  ∈  ℤ )  | 
						
						
							| 15 | 
							
								
							 | 
							zsqcl | 
							⊢ ( 𝑝  ∈  ℤ  →  ( 𝑝 ↑ 2 )  ∈  ℤ )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝 ↑ 2 )  ∈  ℤ )  | 
						
						
							| 17 | 
							
								
							 | 
							eluzelz | 
							⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  𝑃  ∈  ℤ )  | 
						
						
							| 18 | 
							
								
							 | 
							zsqcl | 
							⊢ ( 𝑃  ∈  ℤ  →  ( 𝑃 ↑ 2 )  ∈  ℤ )  | 
						
						
							| 19 | 
							
								6 17 18
							 | 
							3syl | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  ∧  𝑝  ∈  ℙ )  →  ( 𝑃 ↑ 2 )  ∈  ℤ )  | 
						
						
							| 20 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  ∧  𝑝  ∈  ℙ )  →  𝐴  ∈  ℕ )  | 
						
						
							| 21 | 
							
								20
							 | 
							nnzd | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  ∧  𝑝  ∈  ℙ )  →  𝐴  ∈  ℤ )  | 
						
						
							| 22 | 
							
								
							 | 
							dvdstr | 
							⊢ ( ( ( 𝑝 ↑ 2 )  ∈  ℤ  ∧  ( 𝑃 ↑ 2 )  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( ( ( 𝑝 ↑ 2 )  ∥  ( 𝑃 ↑ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  →  ( 𝑝 ↑ 2 )  ∥  𝐴 ) )  | 
						
						
							| 23 | 
							
								16 19 21 22
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  ∧  𝑝  ∈  ℙ )  →  ( ( ( 𝑝 ↑ 2 )  ∥  ( 𝑃 ↑ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  →  ( 𝑝 ↑ 2 )  ∥  𝐴 ) )  | 
						
						
							| 24 | 
							
								12 23
							 | 
							mpan2d | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑝 ↑ 2 )  ∥  ( 𝑃 ↑ 2 )  →  ( 𝑝 ↑ 2 )  ∥  𝐴 ) )  | 
						
						
							| 25 | 
							
								11 24
							 | 
							sylbid | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  ∥  𝑃  →  ( 𝑝 ↑ 2 )  ∥  𝐴 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							reximdva | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  →  ( ∃ 𝑝  ∈  ℙ 𝑝  ∥  𝑃  →  ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 ) )  | 
						
						
							| 27 | 
							
								4 26
							 | 
							mpd | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  →  ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 )  | 
						
						
							| 28 | 
							
								27
							 | 
							iftrued | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  →  if ( ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 ,  0 ,  ( - 1 ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) ) )  =  0 )  | 
						
						
							| 29 | 
							
								2 28
							 | 
							eqtrd | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃 ↑ 2 )  ∥  𝐴 )  →  ( μ ‘ 𝐴 )  =  0 )  |