Step |
Hyp |
Ref |
Expression |
1 |
|
muval |
⊢ ( 𝐴 ∈ ℕ → ( μ ‘ 𝐴 ) = if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) → ( μ ‘ 𝐴 ) = if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) |
3 |
|
exprmfct |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑃 ) |
4 |
3
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑃 ) |
5 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
6 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
7 |
|
eluz2b2 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑃 ∈ ℕ ∧ 1 < 𝑃 ) ) |
8 |
6 7
|
sylib |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑃 ∈ ℕ ∧ 1 < 𝑃 ) ) |
9 |
8
|
simpld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝑃 ∈ ℕ ) |
10 |
|
dvdssqlem |
⊢ ( ( 𝑝 ∈ ℕ ∧ 𝑃 ∈ ℕ ) → ( 𝑝 ∥ 𝑃 ↔ ( 𝑝 ↑ 2 ) ∥ ( 𝑃 ↑ 2 ) ) ) |
11 |
5 9 10
|
syl2an2 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝑃 ↔ ( 𝑝 ↑ 2 ) ∥ ( 𝑃 ↑ 2 ) ) ) |
12 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑃 ↑ 2 ) ∥ 𝐴 ) |
13 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
15 |
|
zsqcl |
⊢ ( 𝑝 ∈ ℤ → ( 𝑝 ↑ 2 ) ∈ ℤ ) |
16 |
14 15
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ 2 ) ∈ ℤ ) |
17 |
|
eluzelz |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℤ ) |
18 |
|
zsqcl |
⊢ ( 𝑃 ∈ ℤ → ( 𝑃 ↑ 2 ) ∈ ℤ ) |
19 |
6 17 18
|
3syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑃 ↑ 2 ) ∈ ℤ ) |
20 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℕ ) |
21 |
20
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ ) |
22 |
|
dvdstr |
⊢ ( ( ( 𝑝 ↑ 2 ) ∈ ℤ ∧ ( 𝑃 ↑ 2 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( ( 𝑝 ↑ 2 ) ∥ ( 𝑃 ↑ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) → ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
23 |
16 19 21 22
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 ↑ 2 ) ∥ ( 𝑃 ↑ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) → ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
24 |
12 23
|
mpan2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ↑ 2 ) ∥ ( 𝑃 ↑ 2 ) → ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
25 |
11 24
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝑃 → ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
26 |
25
|
reximdva |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑃 → ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
27 |
4 26
|
mpd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) |
28 |
27
|
iftrued |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) → if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = 0 ) |
29 |
2 28
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) → ( μ ‘ 𝐴 ) = 0 ) |