Metamath Proof Explorer


Theorem mvdco

Description: Composing two permutations moves at most the union of the points. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Assertion mvdco dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ ( dom ( 𝐹 ∖ I ) ∪ dom ( 𝐺 ∖ I ) )

Proof

Step Hyp Ref Expression
1 inundif ( ( 𝐺 ∩ I ) ∪ ( 𝐺 ∖ I ) ) = 𝐺
2 1 coeq2i ( 𝐹 ∘ ( ( 𝐺 ∩ I ) ∪ ( 𝐺 ∖ I ) ) ) = ( 𝐹𝐺 )
3 coundi ( 𝐹 ∘ ( ( 𝐺 ∩ I ) ∪ ( 𝐺 ∖ I ) ) ) = ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∪ ( 𝐹 ∘ ( 𝐺 ∖ I ) ) )
4 2 3 eqtr3i ( 𝐹𝐺 ) = ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∪ ( 𝐹 ∘ ( 𝐺 ∖ I ) ) )
5 4 difeq1i ( ( 𝐹𝐺 ) ∖ I ) = ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∪ ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ) ∖ I )
6 difundir ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∪ ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ) ∖ I ) = ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) )
7 5 6 eqtri ( ( 𝐹𝐺 ) ∖ I ) = ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) )
8 7 dmeqi dom ( ( 𝐹𝐺 ) ∖ I ) = dom ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) )
9 dmun dom ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) = ( dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) )
10 8 9 eqtri dom ( ( 𝐹𝐺 ) ∖ I ) = ( dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) )
11 inss2 ( 𝐺 ∩ I ) ⊆ I
12 coss2 ( ( 𝐺 ∩ I ) ⊆ I → ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ⊆ ( 𝐹 ∘ I ) )
13 11 12 ax-mp ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ⊆ ( 𝐹 ∘ I )
14 cocnvcnv1 ( 𝐹 ∘ I ) = ( 𝐹 ∘ I )
15 relcnv Rel 𝐹
16 coi1 ( Rel 𝐹 → ( 𝐹 ∘ I ) = 𝐹 )
17 15 16 ax-mp ( 𝐹 ∘ I ) = 𝐹
18 14 17 eqtr3i ( 𝐹 ∘ I ) = 𝐹
19 cnvcnvss 𝐹𝐹
20 18 19 eqsstri ( 𝐹 ∘ I ) ⊆ 𝐹
21 13 20 sstri ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ⊆ 𝐹
22 ssdif ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ⊆ 𝐹 → ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ⊆ ( 𝐹 ∖ I ) )
23 dmss ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ⊆ ( 𝐹 ∖ I ) → dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ⊆ dom ( 𝐹 ∖ I ) )
24 21 22 23 mp2b dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ⊆ dom ( 𝐹 ∖ I )
25 difss ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ ( 𝐹 ∘ ( 𝐺 ∖ I ) )
26 dmss ( ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ ( 𝐹 ∘ ( 𝐺 ∖ I ) ) → dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ dom ( 𝐹 ∘ ( 𝐺 ∖ I ) ) )
27 25 26 ax-mp dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ dom ( 𝐹 ∘ ( 𝐺 ∖ I ) )
28 dmcoss dom ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ⊆ dom ( 𝐺 ∖ I )
29 27 28 sstri dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ dom ( 𝐺 ∖ I )
30 unss12 ( ( dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ⊆ dom ( 𝐹 ∖ I ) ∧ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ dom ( 𝐺 ∖ I ) ) → ( dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) ⊆ ( dom ( 𝐹 ∖ I ) ∪ dom ( 𝐺 ∖ I ) ) )
31 24 29 30 mp2an ( dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) ⊆ ( dom ( 𝐹 ∖ I ) ∪ dom ( 𝐺 ∖ I ) )
32 10 31 eqsstri dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ ( dom ( 𝐹 ∖ I ) ∪ dom ( 𝐺 ∖ I ) )