Step |
Hyp |
Ref |
Expression |
1 |
|
inundif |
⊢ ( ( 𝐺 ∩ I ) ∪ ( 𝐺 ∖ I ) ) = 𝐺 |
2 |
1
|
coeq2i |
⊢ ( 𝐹 ∘ ( ( 𝐺 ∩ I ) ∪ ( 𝐺 ∖ I ) ) ) = ( 𝐹 ∘ 𝐺 ) |
3 |
|
coundi |
⊢ ( 𝐹 ∘ ( ( 𝐺 ∩ I ) ∪ ( 𝐺 ∖ I ) ) ) = ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∪ ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ) |
4 |
2 3
|
eqtr3i |
⊢ ( 𝐹 ∘ 𝐺 ) = ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∪ ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ) |
5 |
4
|
difeq1i |
⊢ ( ( 𝐹 ∘ 𝐺 ) ∖ I ) = ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∪ ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ) ∖ I ) |
6 |
|
difundir |
⊢ ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∪ ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ) ∖ I ) = ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) |
7 |
5 6
|
eqtri |
⊢ ( ( 𝐹 ∘ 𝐺 ) ∖ I ) = ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) |
8 |
7
|
dmeqi |
⊢ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) = dom ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) |
9 |
|
dmun |
⊢ dom ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) = ( dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) |
10 |
8 9
|
eqtri |
⊢ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) = ( dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) |
11 |
|
inss2 |
⊢ ( 𝐺 ∩ I ) ⊆ I |
12 |
|
coss2 |
⊢ ( ( 𝐺 ∩ I ) ⊆ I → ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ⊆ ( 𝐹 ∘ I ) ) |
13 |
11 12
|
ax-mp |
⊢ ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ⊆ ( 𝐹 ∘ I ) |
14 |
|
cocnvcnv1 |
⊢ ( ◡ ◡ 𝐹 ∘ I ) = ( 𝐹 ∘ I ) |
15 |
|
relcnv |
⊢ Rel ◡ ◡ 𝐹 |
16 |
|
coi1 |
⊢ ( Rel ◡ ◡ 𝐹 → ( ◡ ◡ 𝐹 ∘ I ) = ◡ ◡ 𝐹 ) |
17 |
15 16
|
ax-mp |
⊢ ( ◡ ◡ 𝐹 ∘ I ) = ◡ ◡ 𝐹 |
18 |
14 17
|
eqtr3i |
⊢ ( 𝐹 ∘ I ) = ◡ ◡ 𝐹 |
19 |
|
cnvcnvss |
⊢ ◡ ◡ 𝐹 ⊆ 𝐹 |
20 |
18 19
|
eqsstri |
⊢ ( 𝐹 ∘ I ) ⊆ 𝐹 |
21 |
13 20
|
sstri |
⊢ ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ⊆ 𝐹 |
22 |
|
ssdif |
⊢ ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ⊆ 𝐹 → ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ⊆ ( 𝐹 ∖ I ) ) |
23 |
|
dmss |
⊢ ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ⊆ ( 𝐹 ∖ I ) → dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ⊆ dom ( 𝐹 ∖ I ) ) |
24 |
21 22 23
|
mp2b |
⊢ dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ⊆ dom ( 𝐹 ∖ I ) |
25 |
|
difss |
⊢ ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ ( 𝐹 ∘ ( 𝐺 ∖ I ) ) |
26 |
|
dmss |
⊢ ( ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ ( 𝐹 ∘ ( 𝐺 ∖ I ) ) → dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ dom ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ) |
27 |
25 26
|
ax-mp |
⊢ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ dom ( 𝐹 ∘ ( 𝐺 ∖ I ) ) |
28 |
|
dmcoss |
⊢ dom ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ⊆ dom ( 𝐺 ∖ I ) |
29 |
27 28
|
sstri |
⊢ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ dom ( 𝐺 ∖ I ) |
30 |
|
unss12 |
⊢ ( ( dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ⊆ dom ( 𝐹 ∖ I ) ∧ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ dom ( 𝐺 ∖ I ) ) → ( dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) ⊆ ( dom ( 𝐹 ∖ I ) ∪ dom ( 𝐺 ∖ I ) ) ) |
31 |
24 29 30
|
mp2an |
⊢ ( dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) ⊆ ( dom ( 𝐹 ∖ I ) ∪ dom ( 𝐺 ∖ I ) ) |
32 |
10 31
|
eqsstri |
⊢ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ ( dom ( 𝐹 ∖ I ) ∪ dom ( 𝐺 ∖ I ) ) |