Metamath Proof Explorer
		
		
		
		Description:  Move the left term in a sum on the LHS to the RHS, deduction form.
       (Contributed by David A. Wheeler, 11-Oct-2018)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | mvlraddd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
					
						|  |  | mvlraddd.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
					
						|  |  | mvlraddd.3 | ⊢ ( 𝜑  →  ( 𝐴  +  𝐵 )  =  𝐶 ) | 
				
					|  | Assertion | mvlladdd | ⊢  ( 𝜑  →  𝐵  =  ( 𝐶  −  𝐴 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mvlraddd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | mvlraddd.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | mvlraddd.3 | ⊢ ( 𝜑  →  ( 𝐴  +  𝐵 )  =  𝐶 ) | 
						
							| 4 | 2 1 | pncand | ⊢ ( 𝜑  →  ( ( 𝐵  +  𝐴 )  −  𝐴 )  =  𝐵 ) | 
						
							| 5 | 1 2 | addcomd | ⊢ ( 𝜑  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 6 | 5 3 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐵  +  𝐴 )  =  𝐶 ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐵  +  𝐴 )  −  𝐴 )  =  ( 𝐶  −  𝐴 ) ) | 
						
							| 8 | 4 7 | eqtr3d | ⊢ ( 𝜑  →  𝐵  =  ( 𝐶  −  𝐴 ) ) |