Metamath Proof Explorer
Description: Move the left term in a product on the LHS to the RHS, inference form.
Uses divcan4i . (Contributed by David A. Wheeler, 11-Oct-2018)
|
|
Ref |
Expression |
|
Hypotheses |
mvllmuli.1 |
⊢ 𝐴 ∈ ℂ |
|
|
mvllmuli.2 |
⊢ 𝐵 ∈ ℂ |
|
|
mvllmuli.3 |
⊢ 𝐴 ≠ 0 |
|
|
mvllmuli.4 |
⊢ ( 𝐴 · 𝐵 ) = 𝐶 |
|
Assertion |
mvllmuli |
⊢ 𝐵 = ( 𝐶 / 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mvllmuli.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
mvllmuli.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
mvllmuli.3 |
⊢ 𝐴 ≠ 0 |
4 |
|
mvllmuli.4 |
⊢ ( 𝐴 · 𝐵 ) = 𝐶 |
5 |
2 1 3
|
divcan4i |
⊢ ( ( 𝐵 · 𝐴 ) / 𝐴 ) = 𝐵 |
6 |
1 2 4
|
mulcomli |
⊢ ( 𝐵 · 𝐴 ) = 𝐶 |
7 |
6
|
oveq1i |
⊢ ( ( 𝐵 · 𝐴 ) / 𝐴 ) = ( 𝐶 / 𝐴 ) |
8 |
5 7
|
eqtr3i |
⊢ 𝐵 = ( 𝐶 / 𝐴 ) |