Metamath Proof Explorer


Theorem mvllmuli

Description: Move the left term in a product on the LHS to the RHS, inference form. Uses divcan4i . (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvllmuli.1 𝐴 ∈ ℂ
mvllmuli.2 𝐵 ∈ ℂ
mvllmuli.3 𝐴 ≠ 0
mvllmuli.4 ( 𝐴 · 𝐵 ) = 𝐶
Assertion mvllmuli 𝐵 = ( 𝐶 / 𝐴 )

Proof

Step Hyp Ref Expression
1 mvllmuli.1 𝐴 ∈ ℂ
2 mvllmuli.2 𝐵 ∈ ℂ
3 mvllmuli.3 𝐴 ≠ 0
4 mvllmuli.4 ( 𝐴 · 𝐵 ) = 𝐶
5 2 1 3 divcan4i ( ( 𝐵 · 𝐴 ) / 𝐴 ) = 𝐵
6 1 2 4 mulcomli ( 𝐵 · 𝐴 ) = 𝐶
7 6 oveq1i ( ( 𝐵 · 𝐴 ) / 𝐴 ) = ( 𝐶 / 𝐴 )
8 5 7 eqtr3i 𝐵 = ( 𝐶 / 𝐴 )