Metamath Proof Explorer


Theorem mvmulfval

Description: Functional value of the matrix vector multiplication operator. (Contributed by AV, 23-Feb-2019)

Ref Expression
Hypotheses mvmulfval.x × = ( 𝑅 maVecMul ⟨ 𝑀 , 𝑁 ⟩ )
mvmulfval.b 𝐵 = ( Base ‘ 𝑅 )
mvmulfval.t · = ( .r𝑅 )
mvmulfval.r ( 𝜑𝑅𝑉 )
mvmulfval.m ( 𝜑𝑀 ∈ Fin )
mvmulfval.n ( 𝜑𝑁 ∈ Fin )
Assertion mvmulfval ( 𝜑× = ( 𝑥 ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) , 𝑦 ∈ ( 𝐵m 𝑁 ) ↦ ( 𝑖𝑀 ↦ ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑦𝑗 ) ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mvmulfval.x × = ( 𝑅 maVecMul ⟨ 𝑀 , 𝑁 ⟩ )
2 mvmulfval.b 𝐵 = ( Base ‘ 𝑅 )
3 mvmulfval.t · = ( .r𝑅 )
4 mvmulfval.r ( 𝜑𝑅𝑉 )
5 mvmulfval.m ( 𝜑𝑀 ∈ Fin )
6 mvmulfval.n ( 𝜑𝑁 ∈ Fin )
7 df-mvmul maVecMul = ( 𝑟 ∈ V , 𝑜 ∈ V ↦ ( 1st𝑜 ) / 𝑚 ( 2nd𝑜 ) / 𝑛 ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑖𝑚 ↦ ( 𝑟 Σg ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) ) ) ) ) )
8 7 a1i ( 𝜑 → maVecMul = ( 𝑟 ∈ V , 𝑜 ∈ V ↦ ( 1st𝑜 ) / 𝑚 ( 2nd𝑜 ) / 𝑛 ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑖𝑚 ↦ ( 𝑟 Σg ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) ) ) ) ) ) )
9 fvex ( 1st𝑜 ) ∈ V
10 fvex ( 2nd𝑜 ) ∈ V
11 xpeq12 ( ( 𝑚 = ( 1st𝑜 ) ∧ 𝑛 = ( 2nd𝑜 ) ) → ( 𝑚 × 𝑛 ) = ( ( 1st𝑜 ) × ( 2nd𝑜 ) ) )
12 11 oveq2d ( ( 𝑚 = ( 1st𝑜 ) ∧ 𝑛 = ( 2nd𝑜 ) ) → ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) = ( ( Base ‘ 𝑟 ) ↑m ( ( 1st𝑜 ) × ( 2nd𝑜 ) ) ) )
13 oveq2 ( 𝑛 = ( 2nd𝑜 ) → ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) = ( ( Base ‘ 𝑟 ) ↑m ( 2nd𝑜 ) ) )
14 13 adantl ( ( 𝑚 = ( 1st𝑜 ) ∧ 𝑛 = ( 2nd𝑜 ) ) → ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) = ( ( Base ‘ 𝑟 ) ↑m ( 2nd𝑜 ) ) )
15 simpl ( ( 𝑚 = ( 1st𝑜 ) ∧ 𝑛 = ( 2nd𝑜 ) ) → 𝑚 = ( 1st𝑜 ) )
16 simpr ( ( 𝑚 = ( 1st𝑜 ) ∧ 𝑛 = ( 2nd𝑜 ) ) → 𝑛 = ( 2nd𝑜 ) )
17 16 mpteq1d ( ( 𝑚 = ( 1st𝑜 ) ∧ 𝑛 = ( 2nd𝑜 ) ) → ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) ) = ( 𝑗 ∈ ( 2nd𝑜 ) ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) ) )
18 17 oveq2d ( ( 𝑚 = ( 1st𝑜 ) ∧ 𝑛 = ( 2nd𝑜 ) ) → ( 𝑟 Σg ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) ) ) = ( 𝑟 Σg ( 𝑗 ∈ ( 2nd𝑜 ) ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) ) ) )
19 15 18 mpteq12dv ( ( 𝑚 = ( 1st𝑜 ) ∧ 𝑛 = ( 2nd𝑜 ) ) → ( 𝑖𝑚 ↦ ( 𝑟 Σg ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) ) ) ) = ( 𝑖 ∈ ( 1st𝑜 ) ↦ ( 𝑟 Σg ( 𝑗 ∈ ( 2nd𝑜 ) ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) ) ) ) )
20 12 14 19 mpoeq123dv ( ( 𝑚 = ( 1st𝑜 ) ∧ 𝑛 = ( 2nd𝑜 ) ) → ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑖𝑚 ↦ ( 𝑟 Σg ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) ) ) ) ) = ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( ( 1st𝑜 ) × ( 2nd𝑜 ) ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 2nd𝑜 ) ) ↦ ( 𝑖 ∈ ( 1st𝑜 ) ↦ ( 𝑟 Σg ( 𝑗 ∈ ( 2nd𝑜 ) ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) ) ) ) ) )
21 9 10 20 csbie2 ( 1st𝑜 ) / 𝑚 ( 2nd𝑜 ) / 𝑛 ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑖𝑚 ↦ ( 𝑟 Σg ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) ) ) ) ) = ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( ( 1st𝑜 ) × ( 2nd𝑜 ) ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 2nd𝑜 ) ) ↦ ( 𝑖 ∈ ( 1st𝑜 ) ↦ ( 𝑟 Σg ( 𝑗 ∈ ( 2nd𝑜 ) ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) ) ) ) )
22 simprl ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → 𝑟 = 𝑅 )
23 22 fveq2d ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) )
24 23 2 eqtr4di ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( Base ‘ 𝑟 ) = 𝐵 )
25 fveq2 ( 𝑜 = ⟨ 𝑀 , 𝑁 ⟩ → ( 1st𝑜 ) = ( 1st ‘ ⟨ 𝑀 , 𝑁 ⟩ ) )
26 25 ad2antll ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( 1st𝑜 ) = ( 1st ‘ ⟨ 𝑀 , 𝑁 ⟩ ) )
27 op1stg ( ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 1st ‘ ⟨ 𝑀 , 𝑁 ⟩ ) = 𝑀 )
28 5 6 27 syl2anc ( 𝜑 → ( 1st ‘ ⟨ 𝑀 , 𝑁 ⟩ ) = 𝑀 )
29 28 adantr ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( 1st ‘ ⟨ 𝑀 , 𝑁 ⟩ ) = 𝑀 )
30 26 29 eqtrd ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( 1st𝑜 ) = 𝑀 )
31 fveq2 ( 𝑜 = ⟨ 𝑀 , 𝑁 ⟩ → ( 2nd𝑜 ) = ( 2nd ‘ ⟨ 𝑀 , 𝑁 ⟩ ) )
32 31 ad2antll ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( 2nd𝑜 ) = ( 2nd ‘ ⟨ 𝑀 , 𝑁 ⟩ ) )
33 op2ndg ( ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 2nd ‘ ⟨ 𝑀 , 𝑁 ⟩ ) = 𝑁 )
34 5 6 33 syl2anc ( 𝜑 → ( 2nd ‘ ⟨ 𝑀 , 𝑁 ⟩ ) = 𝑁 )
35 34 adantr ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( 2nd ‘ ⟨ 𝑀 , 𝑁 ⟩ ) = 𝑁 )
36 32 35 eqtrd ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( 2nd𝑜 ) = 𝑁 )
37 30 36 xpeq12d ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( ( 1st𝑜 ) × ( 2nd𝑜 ) ) = ( 𝑀 × 𝑁 ) )
38 24 37 oveq12d ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( ( Base ‘ 𝑟 ) ↑m ( ( 1st𝑜 ) × ( 2nd𝑜 ) ) ) = ( 𝐵m ( 𝑀 × 𝑁 ) ) )
39 24 36 oveq12d ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( ( Base ‘ 𝑟 ) ↑m ( 2nd𝑜 ) ) = ( 𝐵m 𝑁 ) )
40 fveq2 ( 𝑟 = 𝑅 → ( .r𝑟 ) = ( .r𝑅 ) )
41 40 adantr ( ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) → ( .r𝑟 ) = ( .r𝑅 ) )
42 41 adantl ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( .r𝑟 ) = ( .r𝑅 ) )
43 42 3 eqtr4di ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( .r𝑟 ) = · )
44 43 oveqd ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) = ( ( 𝑖 𝑥 𝑗 ) · ( 𝑦𝑗 ) ) )
45 36 44 mpteq12dv ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( 𝑗 ∈ ( 2nd𝑜 ) ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) ) = ( 𝑗𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑦𝑗 ) ) ) )
46 22 45 oveq12d ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( 𝑟 Σg ( 𝑗 ∈ ( 2nd𝑜 ) ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑦𝑗 ) ) ) ) )
47 30 46 mpteq12dv ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( 𝑖 ∈ ( 1st𝑜 ) ↦ ( 𝑟 Σg ( 𝑗 ∈ ( 2nd𝑜 ) ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) ) ) ) = ( 𝑖𝑀 ↦ ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑦𝑗 ) ) ) ) ) )
48 38 39 47 mpoeq123dv ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( ( 1st𝑜 ) × ( 2nd𝑜 ) ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 2nd𝑜 ) ) ↦ ( 𝑖 ∈ ( 1st𝑜 ) ↦ ( 𝑟 Σg ( 𝑗 ∈ ( 2nd𝑜 ) ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) ) ) ) ) = ( 𝑥 ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) , 𝑦 ∈ ( 𝐵m 𝑁 ) ↦ ( 𝑖𝑀 ↦ ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑦𝑗 ) ) ) ) ) ) )
49 21 48 syl5eq ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑜 = ⟨ 𝑀 , 𝑁 ⟩ ) ) → ( 1st𝑜 ) / 𝑚 ( 2nd𝑜 ) / 𝑛 ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑖𝑚 ↦ ( 𝑟 Σg ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑦𝑗 ) ) ) ) ) ) = ( 𝑥 ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) , 𝑦 ∈ ( 𝐵m 𝑁 ) ↦ ( 𝑖𝑀 ↦ ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑦𝑗 ) ) ) ) ) ) )
50 4 elexd ( 𝜑𝑅 ∈ V )
51 opex 𝑀 , 𝑁 ⟩ ∈ V
52 51 a1i ( 𝜑 → ⟨ 𝑀 , 𝑁 ⟩ ∈ V )
53 ovex ( 𝐵m ( 𝑀 × 𝑁 ) ) ∈ V
54 ovex ( 𝐵m 𝑁 ) ∈ V
55 53 54 mpoex ( 𝑥 ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) , 𝑦 ∈ ( 𝐵m 𝑁 ) ↦ ( 𝑖𝑀 ↦ ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑦𝑗 ) ) ) ) ) ) ∈ V
56 55 a1i ( 𝜑 → ( 𝑥 ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) , 𝑦 ∈ ( 𝐵m 𝑁 ) ↦ ( 𝑖𝑀 ↦ ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑦𝑗 ) ) ) ) ) ) ∈ V )
57 8 49 50 52 56 ovmpod ( 𝜑 → ( 𝑅 maVecMul ⟨ 𝑀 , 𝑁 ⟩ ) = ( 𝑥 ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) , 𝑦 ∈ ( 𝐵m 𝑁 ) ↦ ( 𝑖𝑀 ↦ ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑦𝑗 ) ) ) ) ) ) )
58 1 57 syl5eq ( 𝜑× = ( 𝑥 ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) , 𝑦 ∈ ( 𝐵m 𝑁 ) ↦ ( 𝑖𝑀 ↦ ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑦𝑗 ) ) ) ) ) ) )