Metamath Proof Explorer


Theorem mvmulval

Description: Multiplication of a vector with a matrix. (Contributed by AV, 23-Feb-2019)

Ref Expression
Hypotheses mvmulfval.x × = ( 𝑅 maVecMul ⟨ 𝑀 , 𝑁 ⟩ )
mvmulfval.b 𝐵 = ( Base ‘ 𝑅 )
mvmulfval.t · = ( .r𝑅 )
mvmulfval.r ( 𝜑𝑅𝑉 )
mvmulfval.m ( 𝜑𝑀 ∈ Fin )
mvmulfval.n ( 𝜑𝑁 ∈ Fin )
mvmulval.x ( 𝜑𝑋 ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) )
mvmulval.y ( 𝜑𝑌 ∈ ( 𝐵m 𝑁 ) )
Assertion mvmulval ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑖𝑀 ↦ ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mvmulfval.x × = ( 𝑅 maVecMul ⟨ 𝑀 , 𝑁 ⟩ )
2 mvmulfval.b 𝐵 = ( Base ‘ 𝑅 )
3 mvmulfval.t · = ( .r𝑅 )
4 mvmulfval.r ( 𝜑𝑅𝑉 )
5 mvmulfval.m ( 𝜑𝑀 ∈ Fin )
6 mvmulfval.n ( 𝜑𝑁 ∈ Fin )
7 mvmulval.x ( 𝜑𝑋 ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) )
8 mvmulval.y ( 𝜑𝑌 ∈ ( 𝐵m 𝑁 ) )
9 1 2 3 4 5 6 mvmulfval ( 𝜑× = ( 𝑥 ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) , 𝑦 ∈ ( 𝐵m 𝑁 ) ↦ ( 𝑖𝑀 ↦ ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑦𝑗 ) ) ) ) ) ) )
10 oveq ( 𝑥 = 𝑋 → ( 𝑖 𝑥 𝑗 ) = ( 𝑖 𝑋 𝑗 ) )
11 fveq1 ( 𝑦 = 𝑌 → ( 𝑦𝑗 ) = ( 𝑌𝑗 ) )
12 10 11 oveqan12d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( 𝑖 𝑥 𝑗 ) · ( 𝑦𝑗 ) ) = ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) )
13 12 adantl ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( ( 𝑖 𝑥 𝑗 ) · ( 𝑦𝑗 ) ) = ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) )
14 13 mpteq2dv ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝑗𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑦𝑗 ) ) ) = ( 𝑗𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) ) )
15 14 oveq2d ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑦𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) ) ) )
16 15 mpteq2dv ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝑖𝑀 ↦ ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑦𝑗 ) ) ) ) ) = ( 𝑖𝑀 ↦ ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) ) ) ) )
17 5 mptexd ( 𝜑 → ( 𝑖𝑀 ↦ ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) ) ) ) ∈ V )
18 9 16 7 8 17 ovmpod ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑖𝑀 ↦ ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) ) ) ) )