Step |
Hyp |
Ref |
Expression |
1 |
|
mvmumamul1.x |
⊢ × = ( 𝑅 maMul 〈 𝑀 , 𝑁 , { ∅ } 〉 ) |
2 |
|
mvmumamul1.t |
⊢ · = ( 𝑅 maVecMul 〈 𝑀 , 𝑁 〉 ) |
3 |
|
mvmumamul1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
mvmumamul1.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
mvmumamul1.m |
⊢ ( 𝜑 → 𝑀 ∈ Fin ) |
6 |
|
mvmumamul1.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
7 |
|
mvmumamul1.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
8 |
|
mvmumamul1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m 𝑁 ) ) |
9 |
|
mvmumamul1.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × { ∅ } ) ) ) |
10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) → 𝑅 ∈ Ring ) |
12 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) → 𝑀 ∈ Fin ) |
13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) → 𝑁 ∈ Fin ) |
14 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) → 𝐴 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
15 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) → 𝑌 ∈ ( 𝐵 ↑m 𝑁 ) ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) → 𝑖 ∈ 𝑀 ) |
17 |
2 3 10 11 12 13 14 15 16
|
mvmulfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) → ( ( 𝐴 · 𝑌 ) ‘ 𝑖 ) = ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝐴 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑘 ) ) ) ) ) |
18 |
17
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑗 ∈ 𝑁 ( 𝑌 ‘ 𝑗 ) = ( 𝑗 𝑍 ∅ ) ) ∧ 𝑖 ∈ 𝑀 ) → ( ( 𝐴 · 𝑌 ) ‘ 𝑖 ) = ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝐴 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑘 ) ) ) ) ) |
19 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑌 ‘ 𝑗 ) = ( 𝑌 ‘ 𝑘 ) ) |
20 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 𝑍 ∅ ) = ( 𝑘 𝑍 ∅ ) ) |
21 |
19 20
|
eqeq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑌 ‘ 𝑗 ) = ( 𝑗 𝑍 ∅ ) ↔ ( 𝑌 ‘ 𝑘 ) = ( 𝑘 𝑍 ∅ ) ) ) |
22 |
21
|
rspccv |
⊢ ( ∀ 𝑗 ∈ 𝑁 ( 𝑌 ‘ 𝑗 ) = ( 𝑗 𝑍 ∅ ) → ( 𝑘 ∈ 𝑁 → ( 𝑌 ‘ 𝑘 ) = ( 𝑘 𝑍 ∅ ) ) ) |
23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ ∀ 𝑗 ∈ 𝑁 ( 𝑌 ‘ 𝑗 ) = ( 𝑗 𝑍 ∅ ) ) → ( 𝑘 ∈ 𝑁 → ( 𝑌 ‘ 𝑘 ) = ( 𝑘 𝑍 ∅ ) ) ) |
24 |
23
|
imp |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑗 ∈ 𝑁 ( 𝑌 ‘ 𝑗 ) = ( 𝑗 𝑍 ∅ ) ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑌 ‘ 𝑘 ) = ( 𝑘 𝑍 ∅ ) ) |
25 |
24
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑗 ∈ 𝑁 ( 𝑌 ‘ 𝑗 ) = ( 𝑗 𝑍 ∅ ) ) ∧ 𝑘 ∈ 𝑁 ) → ( ( 𝑖 𝐴 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑘 ) ) = ( ( 𝑖 𝐴 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑍 ∅ ) ) ) |
26 |
25
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ∀ 𝑗 ∈ 𝑁 ( 𝑌 ‘ 𝑗 ) = ( 𝑗 𝑍 ∅ ) ) → ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝐴 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝐴 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑍 ∅ ) ) ) ) |
27 |
26
|
oveq2d |
⊢ ( ( 𝜑 ∧ ∀ 𝑗 ∈ 𝑁 ( 𝑌 ‘ 𝑗 ) = ( 𝑗 𝑍 ∅ ) ) → ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝐴 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑘 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝐴 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑍 ∅ ) ) ) ) ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑗 ∈ 𝑁 ( 𝑌 ‘ 𝑗 ) = ( 𝑗 𝑍 ∅ ) ) ∧ 𝑖 ∈ 𝑀 ) → ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝐴 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑘 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝐴 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑍 ∅ ) ) ) ) ) |
29 |
|
snfi |
⊢ { ∅ } ∈ Fin |
30 |
29
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) → { ∅ } ∈ Fin ) |
31 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × { ∅ } ) ) ) |
32 |
|
0ex |
⊢ ∅ ∈ V |
33 |
32
|
snid |
⊢ ∅ ∈ { ∅ } |
34 |
33
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) → ∅ ∈ { ∅ } ) |
35 |
1 3 10 11 12 13 30 14 31 16 34
|
mamufv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) → ( 𝑖 ( 𝐴 × 𝑍 ) ∅ ) = ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝐴 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑍 ∅ ) ) ) ) ) |
36 |
35
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) → ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝐴 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑍 ∅ ) ) ) ) = ( 𝑖 ( 𝐴 × 𝑍 ) ∅ ) ) |
37 |
36
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑗 ∈ 𝑁 ( 𝑌 ‘ 𝑗 ) = ( 𝑗 𝑍 ∅ ) ) ∧ 𝑖 ∈ 𝑀 ) → ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝐴 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑍 ∅ ) ) ) ) = ( 𝑖 ( 𝐴 × 𝑍 ) ∅ ) ) |
38 |
18 28 37
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑗 ∈ 𝑁 ( 𝑌 ‘ 𝑗 ) = ( 𝑗 𝑍 ∅ ) ) ∧ 𝑖 ∈ 𝑀 ) → ( ( 𝐴 · 𝑌 ) ‘ 𝑖 ) = ( 𝑖 ( 𝐴 × 𝑍 ) ∅ ) ) |
39 |
38
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑗 ∈ 𝑁 ( 𝑌 ‘ 𝑗 ) = ( 𝑗 𝑍 ∅ ) ) → ∀ 𝑖 ∈ 𝑀 ( ( 𝐴 · 𝑌 ) ‘ 𝑖 ) = ( 𝑖 ( 𝐴 × 𝑍 ) ∅ ) ) |
40 |
39
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑗 ∈ 𝑁 ( 𝑌 ‘ 𝑗 ) = ( 𝑗 𝑍 ∅ ) → ∀ 𝑖 ∈ 𝑀 ( ( 𝐴 · 𝑌 ) ‘ 𝑖 ) = ( 𝑖 ( 𝐴 × 𝑍 ) ∅ ) ) ) |