Step |
Hyp |
Ref |
Expression |
1 |
|
mvrcl.s |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mvrcl.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
3 |
|
mvrcl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
mvrcl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
5 |
|
mvrcl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
mvrcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
7 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
8 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
9 |
7 2 8 4 5 6
|
mvrcl2 |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
10 |
|
fvexd |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) ∈ V ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
12 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
13 |
7 11 12 8 9
|
psrelbas |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
14 |
13
|
ffund |
⊢ ( 𝜑 → Fun ( 𝑉 ‘ 𝑋 ) ) |
15 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
16 |
|
snfi |
⊢ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ∈ Fin |
17 |
16
|
a1i |
⊢ ( 𝜑 → { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ∈ Fin ) |
18 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
19 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
20 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝐼 ∈ 𝑊 ) |
21 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑅 ∈ Ring ) |
22 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑋 ∈ 𝐼 ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) |
24 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ↔ ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑥 ≠ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
25 |
23 24
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑥 ≠ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
26 |
25
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
27 |
2 12 18 19 20 21 22 26
|
mvrval2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( ( 𝑉 ‘ 𝑋 ) ‘ 𝑥 ) = if ( 𝑥 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
28 |
25
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑥 ≠ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) |
29 |
28
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ¬ 𝑥 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) |
30 |
29
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → if ( 𝑥 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
31 |
27 30
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( ( 𝑉 ‘ 𝑋 ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
32 |
13 31
|
suppss |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑋 ) supp ( 0g ‘ 𝑅 ) ) ⊆ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) |
33 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑉 ‘ 𝑋 ) ∈ V ∧ Fun ( 𝑉 ‘ 𝑋 ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ∧ ( { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ∈ Fin ∧ ( ( 𝑉 ‘ 𝑋 ) supp ( 0g ‘ 𝑅 ) ) ⊆ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑉 ‘ 𝑋 ) finSupp ( 0g ‘ 𝑅 ) ) |
34 |
10 14 15 17 32 33
|
syl32anc |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) finSupp ( 0g ‘ 𝑅 ) ) |
35 |
1 7 8 18 3
|
mplelbas |
⊢ ( ( 𝑉 ‘ 𝑋 ) ∈ 𝐵 ↔ ( ( 𝑉 ‘ 𝑋 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝑉 ‘ 𝑋 ) finSupp ( 0g ‘ 𝑅 ) ) ) |
36 |
9 34 35
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) ∈ 𝐵 ) |