| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mvrf.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | mvrf.v | ⊢ 𝑉  =  ( 𝐼  mVar  𝑅 ) | 
						
							| 3 |  | mvrf.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 4 |  | mvrf.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 5 |  | mvrf.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 6 |  | mvrf1.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 7 |  | mvrf1.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 8 |  | mvrf1.n | ⊢ ( 𝜑  →   1   ≠   0  ) | 
						
							| 9 | 1 2 3 4 5 | mvrf | ⊢ ( 𝜑  →  𝑉 : 𝐼 ⟶ 𝐵 ) | 
						
							| 10 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) ) )  →   1   ≠   0  ) | 
						
							| 11 |  | simp2r | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) )  ∧  ¬  𝑥  =  𝑦 )  →  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) ) | 
						
							| 12 | 11 | fveq1d | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) )  ∧  ¬  𝑥  =  𝑦 )  →  ( ( 𝑉 ‘ 𝑥 ) ‘ ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) ) )  =  ( ( 𝑉 ‘ 𝑦 ) ‘ ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) ) ) ) | 
						
							| 13 |  | eqid | ⊢ { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  =  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } | 
						
							| 14 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) )  ∧  ¬  𝑥  =  𝑦 )  →  𝐼  ∈  𝑊 ) | 
						
							| 15 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) )  ∧  ¬  𝑥  =  𝑦 )  →  𝑅  ∈  Ring ) | 
						
							| 16 |  | simp2ll | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) )  ∧  ¬  𝑥  =  𝑦 )  →  𝑥  ∈  𝐼 ) | 
						
							| 17 | 2 13 6 7 14 15 16 | mvrid | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) )  ∧  ¬  𝑥  =  𝑦 )  →  ( ( 𝑉 ‘ 𝑥 ) ‘ ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) ) )  =   1  ) | 
						
							| 18 |  | simp2lr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) )  ∧  ¬  𝑥  =  𝑦 )  →  𝑦  ∈  𝐼 ) | 
						
							| 19 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 20 | 13 | snifpsrbag | ⊢ ( ( 𝐼  ∈  𝑊  ∧  1  ∈  ℕ0 )  →  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ) | 
						
							| 21 | 14 19 20 | sylancl | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) )  ∧  ¬  𝑥  =  𝑦 )  →  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ) | 
						
							| 22 | 2 13 6 7 14 15 18 21 | mvrval2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) )  ∧  ¬  𝑥  =  𝑦 )  →  ( ( 𝑉 ‘ 𝑦 ) ‘ ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) ) )  =  if ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑦 ,  1 ,  0 ) ) ,   1  ,   0  ) ) | 
						
							| 23 | 12 17 22 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) )  ∧  ¬  𝑥  =  𝑦 )  →   1   =  if ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑦 ,  1 ,  0 ) ) ,   1  ,   0  ) ) | 
						
							| 24 |  | simp3 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) )  ∧  ¬  𝑥  =  𝑦 )  →  ¬  𝑥  =  𝑦 ) | 
						
							| 25 |  | mpteqb | ⊢ ( ∀ 𝑧  ∈  𝐼 if ( 𝑧  =  𝑥 ,  1 ,  0 )  ∈  ℕ0  →  ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑦 ,  1 ,  0 ) )  ↔  ∀ 𝑧  ∈  𝐼 if ( 𝑧  =  𝑥 ,  1 ,  0 )  =  if ( 𝑧  =  𝑦 ,  1 ,  0 ) ) ) | 
						
							| 26 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 27 | 19 26 | ifcli | ⊢ if ( 𝑧  =  𝑥 ,  1 ,  0 )  ∈  ℕ0 | 
						
							| 28 | 27 | a1i | ⊢ ( 𝑧  ∈  𝐼  →  if ( 𝑧  =  𝑥 ,  1 ,  0 )  ∈  ℕ0 ) | 
						
							| 29 | 25 28 | mprg | ⊢ ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑦 ,  1 ,  0 ) )  ↔  ∀ 𝑧  ∈  𝐼 if ( 𝑧  =  𝑥 ,  1 ,  0 )  =  if ( 𝑧  =  𝑦 ,  1 ,  0 ) ) | 
						
							| 30 |  | iftrue | ⊢ ( 𝑧  =  𝑥  →  if ( 𝑧  =  𝑥 ,  1 ,  0 )  =  1 ) | 
						
							| 31 |  | eqeq1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  =  𝑦  ↔  𝑥  =  𝑦 ) ) | 
						
							| 32 | 31 | ifbid | ⊢ ( 𝑧  =  𝑥  →  if ( 𝑧  =  𝑦 ,  1 ,  0 )  =  if ( 𝑥  =  𝑦 ,  1 ,  0 ) ) | 
						
							| 33 | 30 32 | eqeq12d | ⊢ ( 𝑧  =  𝑥  →  ( if ( 𝑧  =  𝑥 ,  1 ,  0 )  =  if ( 𝑧  =  𝑦 ,  1 ,  0 )  ↔  1  =  if ( 𝑥  =  𝑦 ,  1 ,  0 ) ) ) | 
						
							| 34 | 33 | rspcv | ⊢ ( 𝑥  ∈  𝐼  →  ( ∀ 𝑧  ∈  𝐼 if ( 𝑧  =  𝑥 ,  1 ,  0 )  =  if ( 𝑧  =  𝑦 ,  1 ,  0 )  →  1  =  if ( 𝑥  =  𝑦 ,  1 ,  0 ) ) ) | 
						
							| 35 | 29 34 | biimtrid | ⊢ ( 𝑥  ∈  𝐼  →  ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑦 ,  1 ,  0 ) )  →  1  =  if ( 𝑥  =  𝑦 ,  1 ,  0 ) ) ) | 
						
							| 36 | 16 35 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) )  ∧  ¬  𝑥  =  𝑦 )  →  ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑦 ,  1 ,  0 ) )  →  1  =  if ( 𝑥  =  𝑦 ,  1 ,  0 ) ) ) | 
						
							| 37 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 38 |  | eqeq1 | ⊢ ( 1  =  if ( 𝑥  =  𝑦 ,  1 ,  0 )  →  ( 1  =  0  ↔  if ( 𝑥  =  𝑦 ,  1 ,  0 )  =  0 ) ) | 
						
							| 39 | 38 | necon3abid | ⊢ ( 1  =  if ( 𝑥  =  𝑦 ,  1 ,  0 )  →  ( 1  ≠  0  ↔  ¬  if ( 𝑥  =  𝑦 ,  1 ,  0 )  =  0 ) ) | 
						
							| 40 | 37 39 | mpbii | ⊢ ( 1  =  if ( 𝑥  =  𝑦 ,  1 ,  0 )  →  ¬  if ( 𝑥  =  𝑦 ,  1 ,  0 )  =  0 ) | 
						
							| 41 |  | iffalse | ⊢ ( ¬  𝑥  =  𝑦  →  if ( 𝑥  =  𝑦 ,  1 ,  0 )  =  0 ) | 
						
							| 42 | 40 41 | nsyl2 | ⊢ ( 1  =  if ( 𝑥  =  𝑦 ,  1 ,  0 )  →  𝑥  =  𝑦 ) | 
						
							| 43 | 36 42 | syl6 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) )  ∧  ¬  𝑥  =  𝑦 )  →  ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑦 ,  1 ,  0 ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 44 | 24 43 | mtod | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) )  ∧  ¬  𝑥  =  𝑦 )  →  ¬  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑦 ,  1 ,  0 ) ) ) | 
						
							| 45 |  | iffalse | ⊢ ( ¬  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑦 ,  1 ,  0 ) )  →  if ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑦 ,  1 ,  0 ) ) ,   1  ,   0  )  =   0  ) | 
						
							| 46 | 44 45 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) )  ∧  ¬  𝑥  =  𝑦 )  →  if ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑦 ,  1 ,  0 ) ) ,   1  ,   0  )  =   0  ) | 
						
							| 47 | 23 46 | eqtrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) )  ∧  ¬  𝑥  =  𝑦 )  →   1   =   0  ) | 
						
							| 48 | 47 | 3expia | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) ) )  →  ( ¬  𝑥  =  𝑦  →   1   =   0  ) ) | 
						
							| 49 | 48 | necon1ad | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) ) )  →  (  1   ≠   0   →  𝑥  =  𝑦 ) ) | 
						
							| 50 | 10 49 | mpd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  ∧  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 ) ) )  →  𝑥  =  𝑦 ) | 
						
							| 51 | 50 | expr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 ) )  →  ( ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 52 | 51 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 ∀ 𝑦  ∈  𝐼 ( ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 53 |  | dff13 | ⊢ ( 𝑉 : 𝐼 –1-1→ 𝐵  ↔  ( 𝑉 : 𝐼 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐼 ∀ 𝑦  ∈  𝐼 ( ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 54 | 9 52 53 | sylanbrc | ⊢ ( 𝜑  →  𝑉 : 𝐼 –1-1→ 𝐵 ) |