Step |
Hyp |
Ref |
Expression |
1 |
|
mvrf2.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mvrf2.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
3 |
|
mvrf2.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
mvrf2.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
5 |
|
mvrf2.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
7 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
8 |
6 2 7 4 5
|
mvrf |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
9 |
8
|
ffnd |
⊢ ( 𝜑 → 𝑉 Fn 𝐼 ) |
10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
11 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
13 |
1 2 3 10 11 12
|
mvrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) ∈ 𝐵 ) |
14 |
13
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ 𝐵 ) |
15 |
|
ffnfv |
⊢ ( 𝑉 : 𝐼 ⟶ 𝐵 ↔ ( 𝑉 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ 𝐵 ) ) |
16 |
9 14 15
|
sylanbrc |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ 𝐵 ) |