Step |
Hyp |
Ref |
Expression |
1 |
|
mvrfval.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
2 |
|
mvrfval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
3 |
|
mvrfval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
mvrfval.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
mvrfval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
6 |
|
mvrfval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑌 ) |
7 |
|
mvrval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
8 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
9 |
2
|
snifpsrbag |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 1 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ 𝐷 ) |
10 |
5 8 9
|
sylancl |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ 𝐷 ) |
11 |
1 2 3 4 5 6 7 10
|
mvrval2 |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑋 ) ‘ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = if ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) |
12 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) |
13 |
12
|
iftruei |
⊢ if ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) = 1 |
14 |
11 13
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑋 ) ‘ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 1 ) |