Metamath Proof Explorer


Theorem mvrid

Description: The X i -th coefficient of the term X i is 1 . (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses mvrfval.v 𝑉 = ( 𝐼 mVar 𝑅 )
mvrfval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
mvrfval.z 0 = ( 0g𝑅 )
mvrfval.o 1 = ( 1r𝑅 )
mvrfval.i ( 𝜑𝐼𝑊 )
mvrfval.r ( 𝜑𝑅𝑌 )
mvrval.x ( 𝜑𝑋𝐼 )
Assertion mvrid ( 𝜑 → ( ( 𝑉𝑋 ) ‘ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 1 )

Proof

Step Hyp Ref Expression
1 mvrfval.v 𝑉 = ( 𝐼 mVar 𝑅 )
2 mvrfval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
3 mvrfval.z 0 = ( 0g𝑅 )
4 mvrfval.o 1 = ( 1r𝑅 )
5 mvrfval.i ( 𝜑𝐼𝑊 )
6 mvrfval.r ( 𝜑𝑅𝑌 )
7 mvrval.x ( 𝜑𝑋𝐼 )
8 1nn0 1 ∈ ℕ0
9 2 snifpsrbag ( ( 𝐼𝑊 ∧ 1 ∈ ℕ0 ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ 𝐷 )
10 5 8 9 sylancl ( 𝜑 → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ 𝐷 )
11 1 2 3 4 5 6 7 10 mvrval2 ( 𝜑 → ( ( 𝑉𝑋 ) ‘ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = if ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) )
12 eqid ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) )
13 12 iftruei if ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) = 1
14 11 13 eqtrdi ( 𝜑 → ( ( 𝑉𝑋 ) ‘ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 1 )