Metamath Proof Explorer


Theorem mvrval

Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses mvrfval.v 𝑉 = ( 𝐼 mVar 𝑅 )
mvrfval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
mvrfval.z 0 = ( 0g𝑅 )
mvrfval.o 1 = ( 1r𝑅 )
mvrfval.i ( 𝜑𝐼𝑊 )
mvrfval.r ( 𝜑𝑅𝑌 )
mvrval.x ( 𝜑𝑋𝐼 )
Assertion mvrval ( 𝜑 → ( 𝑉𝑋 ) = ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) )

Proof

Step Hyp Ref Expression
1 mvrfval.v 𝑉 = ( 𝐼 mVar 𝑅 )
2 mvrfval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
3 mvrfval.z 0 = ( 0g𝑅 )
4 mvrfval.o 1 = ( 1r𝑅 )
5 mvrfval.i ( 𝜑𝐼𝑊 )
6 mvrfval.r ( 𝜑𝑅𝑌 )
7 mvrval.x ( 𝜑𝑋𝐼 )
8 1 2 3 4 5 6 mvrfval ( 𝜑𝑉 = ( 𝑥𝐼 ↦ ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) )
9 8 fveq1d ( 𝜑 → ( 𝑉𝑋 ) = ( ( 𝑥𝐼 ↦ ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ‘ 𝑋 ) )
10 eqeq2 ( 𝑥 = 𝑋 → ( 𝑦 = 𝑥𝑦 = 𝑋 ) )
11 10 ifbid ( 𝑥 = 𝑋 → if ( 𝑦 = 𝑥 , 1 , 0 ) = if ( 𝑦 = 𝑋 , 1 , 0 ) )
12 11 mpteq2dv ( 𝑥 = 𝑋 → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) )
13 12 eqeq2d ( 𝑥 = 𝑋 → ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ↔ 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
14 13 ifbid ( 𝑥 = 𝑋 → if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) = if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) )
15 14 mpteq2dv ( 𝑥 = 𝑋 → ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) = ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) )
16 eqid ( 𝑥𝐼 ↦ ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) )
17 ovex ( ℕ0m 𝐼 ) ∈ V
18 2 17 rabex2 𝐷 ∈ V
19 18 mptex ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) ∈ V
20 15 16 19 fvmpt ( 𝑋𝐼 → ( ( 𝑥𝐼 ↦ ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ‘ 𝑋 ) = ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) )
21 7 20 syl ( 𝜑 → ( ( 𝑥𝐼 ↦ ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ‘ 𝑋 ) = ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) )
22 9 21 eqtrd ( 𝜑 → ( 𝑉𝑋 ) = ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) )