Step |
Hyp |
Ref |
Expression |
1 |
|
mvrfval.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
2 |
|
mvrfval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
3 |
|
mvrfval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
mvrfval.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
mvrfval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
6 |
|
mvrfval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑌 ) |
7 |
|
mvrval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
8 |
1 2 3 4 5 6
|
mvrfval |
⊢ ( 𝜑 → 𝑉 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ) |
9 |
8
|
fveq1d |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ‘ 𝑋 ) ) |
10 |
|
eqeq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 = 𝑥 ↔ 𝑦 = 𝑋 ) ) |
11 |
10
|
ifbid |
⊢ ( 𝑥 = 𝑋 → if ( 𝑦 = 𝑥 , 1 , 0 ) = if ( 𝑦 = 𝑋 , 1 , 0 ) ) |
12 |
11
|
mpteq2dv |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ↔ 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
14 |
13
|
ifbid |
⊢ ( 𝑥 = 𝑋 → if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) = if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) |
15 |
14
|
mpteq2dv |
⊢ ( 𝑥 = 𝑋 → ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) = ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) ) |
16 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) |
17 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
18 |
2 17
|
rabex2 |
⊢ 𝐷 ∈ V |
19 |
18
|
mptex |
⊢ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) ∈ V |
20 |
15 16 19
|
fvmpt |
⊢ ( 𝑋 ∈ 𝐼 → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ‘ 𝑋 ) = ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) ) |
21 |
7 20
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ‘ 𝑋 ) = ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) ) |
22 |
9 21
|
eqtrd |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) = ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) ) |