| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mvth.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
mvth.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
mvth.lt |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 4 |
|
mvth.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 5 |
|
mvth.d |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
| 6 |
|
mptresid |
⊢ ( I ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑧 ) |
| 7 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 8 |
1 2 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 9 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 10 |
|
cncfmptid |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑧 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 11 |
8 9 10
|
sylancl |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑧 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 12 |
6 11
|
eqeltrid |
⊢ ( 𝜑 → ( I ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 13 |
6
|
eqcomi |
⊢ ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑧 ) = ( I ↾ ( 𝐴 [,] 𝐵 ) ) |
| 14 |
13
|
oveq2i |
⊢ ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑧 ) ) = ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) |
| 15 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ ) |
| 18 |
17
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℂ ) |
| 19 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → 1 ∈ ℝ ) |
| 20 |
16
|
dvmptid |
⊢ ( 𝜑 → ( ℝ D ( 𝑧 ∈ ℝ ↦ 𝑧 ) ) = ( 𝑧 ∈ ℝ ↦ 1 ) ) |
| 21 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 22 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 23 |
|
iccntr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 24 |
1 2 23
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 25 |
16 18 19 20 8 21 22 24
|
dvmptres2 |
⊢ ( 𝜑 → ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑧 ) ) = ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
| 26 |
14 25
|
eqtr3id |
⊢ ( 𝜑 → ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
| 27 |
26
|
dmeqd |
⊢ ( 𝜑 → dom ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) = dom ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
| 28 |
|
1ex |
⊢ 1 ∈ V |
| 29 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) = ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) |
| 30 |
28 29
|
dmmpti |
⊢ dom ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) = ( 𝐴 (,) 𝐵 ) |
| 31 |
27 30
|
eqtrdi |
⊢ ( 𝜑 → dom ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 32 |
1 2 3 4 12 5 31
|
cmvth |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) = ( ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 33 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 34 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 35 |
1 2 3
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 36 |
|
ubicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 37 |
33 34 35 36
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 38 |
|
fvresi |
⊢ ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) → ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) = 𝐵 ) |
| 39 |
37 38
|
syl |
⊢ ( 𝜑 → ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) = 𝐵 ) |
| 40 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 41 |
33 34 35 40
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 42 |
|
fvresi |
⊢ ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) → ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) = 𝐴 ) |
| 43 |
41 42
|
syl |
⊢ ( 𝜑 → ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) = 𝐴 ) |
| 44 |
39 43
|
oveq12d |
⊢ ( 𝜑 → ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) = ( 𝐵 − 𝐴 ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) = ( 𝐵 − 𝐴 ) ) |
| 46 |
45
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( ( 𝐵 − 𝐴 ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 47 |
26
|
fveq1d |
⊢ ( 𝜑 → ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) = ( ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ‘ 𝑥 ) ) |
| 48 |
|
eqidd |
⊢ ( 𝑧 = 𝑥 → 1 = 1 ) |
| 49 |
48 29 28
|
fvmpt3i |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ‘ 𝑥 ) = 1 ) |
| 50 |
47 49
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) = 1 ) |
| 51 |
50
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · 1 ) ) |
| 52 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 53 |
4 52
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 54 |
53 37
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
| 55 |
53 41
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 56 |
54 55
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) |
| 57 |
56
|
recnd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ) |
| 59 |
58
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · 1 ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 60 |
51 59
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 61 |
46 60
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) ↔ ( ( 𝐵 − 𝐴 ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 62 |
2 1
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 63 |
62
|
recnd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 65 |
|
dvf |
⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ |
| 66 |
5
|
feq2d |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
| 67 |
65 66
|
mpbii |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 68 |
67
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 69 |
1 2
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
| 70 |
3 69
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐵 − 𝐴 ) ) |
| 71 |
70
|
gt0ne0d |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≠ 0 ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐵 − 𝐴 ) ≠ 0 ) |
| 73 |
58 64 68 72
|
divmuld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ↔ ( ( 𝐵 − 𝐴 ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 74 |
61 73
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) ↔ ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 75 |
|
eqcom |
⊢ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) = ( ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ↔ ( ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) ) |
| 76 |
|
eqcom |
⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) ↔ ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 77 |
74 75 76
|
3bitr4g |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) = ( ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ↔ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) ) ) |
| 78 |
77
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) = ( ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ↔ ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) ) ) |
| 79 |
32 78
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) ) |