Step |
Hyp |
Ref |
Expression |
1 |
|
mxidlirred.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
mxidlirred.k |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
3 |
|
mxidlirred.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
mxidlirred.m |
⊢ 𝑀 = ( 𝐾 ‘ { 𝑋 } ) |
5 |
|
mxidlirred.r |
⊢ ( 𝜑 → 𝑅 ∈ PID ) |
6 |
|
mxidlirred.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
mxidlirred.y |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
8 |
|
mxidlirred.1 |
⊢ ( 𝜑 → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) |
9 |
|
df-pid |
⊢ PID = ( IDomn ∩ LPIR ) |
10 |
5 9
|
eleqtrdi |
⊢ ( 𝜑 → 𝑅 ∈ ( IDomn ∩ LPIR ) ) |
11 |
10
|
elin1d |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑅 ∈ IDomn ) |
13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑋 ∈ 𝐵 ) |
14 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑋 ≠ 0 ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
16 |
1 2 3 4 12 13 14 15
|
mxidlirredi |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑋 ∈ ( Irred ‘ 𝑅 ) ) |
17 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
18 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → 𝑥 ∈ 𝐵 ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑥 ∈ 𝐵 ) |
20 |
6
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑋 ∈ 𝐵 ) |
21 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
22 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
23 |
11
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
24 |
23
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → 𝑅 ∈ Ring ) |
25 |
24
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → 𝑅 ∈ Ring ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑅 ∈ Ring ) |
27 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑡 ∈ 𝐵 ) |
28 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) |
29 |
|
simp-8r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑋 ∈ ( Irred ‘ 𝑅 ) ) |
30 |
28 29
|
eqeltrrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ∈ ( Irred ‘ 𝑅 ) ) |
31 |
|
eqid |
⊢ ( Irred ‘ 𝑅 ) = ( Irred ‘ 𝑅 ) |
32 |
31 1 21 22
|
irredmul |
⊢ ( ( 𝑡 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ∈ ( Irred ‘ 𝑅 ) ) → ( 𝑡 ∈ ( Unit ‘ 𝑅 ) ∨ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) ) |
33 |
27 19 30 32
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝑡 ∈ ( Unit ‘ 𝑅 ) ∨ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) ) |
34 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) |
35 |
34
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) |
36 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) |
37 |
|
annim |
⊢ ( ( 𝑀 ⊆ 𝑘 ∧ ¬ ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ↔ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) |
38 |
36 37
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → ( 𝑀 ⊆ 𝑘 ∧ ¬ ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) |
39 |
38
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → ¬ ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) |
40 |
|
ioran |
⊢ ( ¬ ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ↔ ( ¬ 𝑘 = 𝑀 ∧ ¬ 𝑘 = 𝐵 ) ) |
41 |
39 40
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → ( ¬ 𝑘 = 𝑀 ∧ ¬ 𝑘 = 𝐵 ) ) |
42 |
41
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → ¬ 𝑘 = 𝐵 ) |
43 |
42
|
neqned |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → 𝑘 ≠ 𝐵 ) |
44 |
43
|
ad4antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑘 ≠ 𝐵 ) |
45 |
35 44
|
eqnetrrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝐾 ‘ { 𝑥 } ) ≠ 𝐵 ) |
46 |
45
|
neneqd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ¬ ( 𝐾 ‘ { 𝑥 } ) = 𝐵 ) |
47 |
|
eqid |
⊢ ( 𝐾 ‘ { 𝑥 } ) = ( 𝐾 ‘ { 𝑥 } ) |
48 |
11
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑅 ∈ IDomn ) |
49 |
21 2 47 1 19 48
|
unitpidl1 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( ( 𝐾 ‘ { 𝑥 } ) = 𝐵 ↔ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) ) |
50 |
46 49
|
mtbid |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ¬ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) |
51 |
33 50
|
olcnd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑡 ∈ ( Unit ‘ 𝑅 ) ) |
52 |
28
|
eqcomd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑋 ) |
53 |
1 2 17 19 20 21 22 26 51 52
|
dvdsruassoi |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝑥 ( ∥r ‘ 𝑅 ) 𝑋 ∧ 𝑋 ( ∥r ‘ 𝑅 ) 𝑥 ) ) |
54 |
1 2 17 19 20 26
|
rspsnasso |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( ( 𝑥 ( ∥r ‘ 𝑅 ) 𝑋 ∧ 𝑋 ( ∥r ‘ 𝑅 ) 𝑥 ) ↔ ( 𝐾 ‘ { 𝑋 } ) = ( 𝐾 ‘ { 𝑥 } ) ) ) |
55 |
53 54
|
mpbid |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝐾 ‘ { 𝑋 } ) = ( 𝐾 ‘ { 𝑥 } ) ) |
56 |
55 35
|
eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝐾 ‘ { 𝑋 } ) = 𝑘 ) |
57 |
4 56
|
eqtr2id |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑘 = 𝑀 ) |
58 |
41
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → ¬ 𝑘 = 𝑀 ) |
59 |
58
|
ad4antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ¬ 𝑘 = 𝑀 ) |
60 |
57 59
|
pm2.21dd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
61 |
38
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → 𝑀 ⊆ 𝑘 ) |
62 |
61
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → 𝑀 ⊆ 𝑘 ) |
63 |
6
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝐵 ) |
64 |
2 1
|
rspssid |
⊢ ( ( 𝑅 ∈ Ring ∧ { 𝑋 } ⊆ 𝐵 ) → { 𝑋 } ⊆ ( 𝐾 ‘ { 𝑋 } ) ) |
65 |
23 63 64
|
syl2anc |
⊢ ( 𝜑 → { 𝑋 } ⊆ ( 𝐾 ‘ { 𝑋 } ) ) |
66 |
65 4
|
sseqtrrdi |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑀 ) |
67 |
|
snssg |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ∈ 𝑀 ↔ { 𝑋 } ⊆ 𝑀 ) ) |
68 |
67
|
biimpar |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ { 𝑋 } ⊆ 𝑀 ) → 𝑋 ∈ 𝑀 ) |
69 |
6 66 68
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ 𝑀 ) |
70 |
69
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → 𝑋 ∈ 𝑀 ) |
71 |
62 70
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → 𝑋 ∈ 𝑘 ) |
72 |
71 34
|
eleqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → 𝑋 ∈ ( 𝐾 ‘ { 𝑥 } ) ) |
73 |
1 22 2
|
rspsnel |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 ∈ ( 𝐾 ‘ { 𝑥 } ) ↔ ∃ 𝑡 ∈ 𝐵 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
74 |
73
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑋 ∈ ( 𝐾 ‘ { 𝑥 } ) ) → ∃ 𝑡 ∈ 𝐵 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) |
75 |
25 18 72 74
|
syl21anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → ∃ 𝑡 ∈ 𝐵 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) |
76 |
60 75
|
r19.29a |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
77 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) |
78 |
10
|
elin2d |
⊢ ( 𝜑 → 𝑅 ∈ LPIR ) |
79 |
|
eqid |
⊢ ( LPIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) |
80 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
81 |
79 80
|
islpir |
⊢ ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) ) |
82 |
81
|
simprbi |
⊢ ( 𝑅 ∈ LPIR → ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) |
83 |
78 82
|
syl |
⊢ ( 𝜑 → ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) |
84 |
83
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) |
85 |
77 84
|
eleqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → 𝑘 ∈ ( LPIdeal ‘ 𝑅 ) ) |
86 |
79 2 1
|
islpidl |
⊢ ( 𝑅 ∈ Ring → ( 𝑘 ∈ ( LPIdeal ‘ 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐵 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ) |
87 |
86
|
biimpa |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑘 ∈ ( LPIdeal ‘ 𝑅 ) ) → ∃ 𝑥 ∈ 𝐵 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) |
88 |
24 85 87
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → ∃ 𝑥 ∈ 𝐵 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) |
89 |
76 88
|
r19.29a |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
90 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) |
91 |
31 21
|
irrednu |
⊢ ( 𝑋 ∈ ( Irred ‘ 𝑅 ) → ¬ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) |
92 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) → ¬ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) |
93 |
21 2 4 1 6 11
|
unitpidl1 |
⊢ ( 𝜑 → ( 𝑀 = 𝐵 ↔ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) ) |
94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) → ( 𝑀 = 𝐵 ↔ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) ) |
95 |
94
|
necon3abid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) → ( 𝑀 ≠ 𝐵 ↔ ¬ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) ) |
96 |
92 95
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) → 𝑀 ≠ 𝐵 ) |
97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ≠ 𝐵 ) |
98 |
90 97
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ) ) |
99 |
1
|
ismxidl |
⊢ ( 𝑅 ∈ Ring → ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ∧ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ) ) |
100 |
23 99
|
syl |
⊢ ( 𝜑 → ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ∧ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ) ) |
101 |
|
df-3an |
⊢ ( ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ∧ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ↔ ( ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ) ∧ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ) |
102 |
100 101
|
bitrdi |
⊢ ( 𝜑 → ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ ( ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ) ∧ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ) ) |
103 |
102
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ ¬ ( ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ) ∧ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ) ) |
104 |
103
|
biimpa |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ¬ ( ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ) ∧ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ) |
105 |
104
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ¬ ( ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ) ∧ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ) |
106 |
98 105
|
mpnanrd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ¬ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) |
107 |
|
rexnal |
⊢ ( ∃ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ↔ ¬ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) |
108 |
106 107
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ∃ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) |
109 |
89 108
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
110 |
109
|
pm2.18da |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
111 |
16 110
|
impbida |
⊢ ( 𝜑 → ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ) |