Step |
Hyp |
Ref |
Expression |
1 |
|
mxidlmaxv.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
mxidlmaxv.2 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
3 |
|
mxidlmaxv.3 |
⊢ ( 𝜑 → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
4 |
|
mxidlmaxv.4 |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
5 |
|
mxidlmaxv.5 |
⊢ ( 𝜑 → 𝑀 ⊆ 𝐼 ) |
6 |
|
mxidlmaxv.6 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐼 ∖ 𝑀 ) ) |
7 |
1
|
mxidlmax |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ⊆ 𝐼 ) ) → ( 𝐼 = 𝑀 ∨ 𝐼 = 𝐵 ) ) |
8 |
2 3 4 5 7
|
syl22anc |
⊢ ( 𝜑 → ( 𝐼 = 𝑀 ∨ 𝐼 = 𝐵 ) ) |
9 |
6
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
10 |
6
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑀 ) |
11 |
|
nelne1 |
⊢ ( ( 𝑋 ∈ 𝐼 ∧ ¬ 𝑋 ∈ 𝑀 ) → 𝐼 ≠ 𝑀 ) |
12 |
9 10 11
|
syl2anc |
⊢ ( 𝜑 → 𝐼 ≠ 𝑀 ) |
13 |
12
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐼 = 𝑀 ) |
14 |
8 13
|
orcnd |
⊢ ( 𝜑 → 𝐼 = 𝐵 ) |