Metamath Proof Explorer


Theorem mxidlmaxv

Description: An ideal I strictly containing a maximal ideal M is the whole ring B . (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses mxidlmaxv.1 𝐵 = ( Base ‘ 𝑅 )
mxidlmaxv.2 ( 𝜑𝑅 ∈ Ring )
mxidlmaxv.3 ( 𝜑𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) )
mxidlmaxv.4 ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
mxidlmaxv.5 ( 𝜑𝑀𝐼 )
mxidlmaxv.6 ( 𝜑𝑋 ∈ ( 𝐼𝑀 ) )
Assertion mxidlmaxv ( 𝜑𝐼 = 𝐵 )

Proof

Step Hyp Ref Expression
1 mxidlmaxv.1 𝐵 = ( Base ‘ 𝑅 )
2 mxidlmaxv.2 ( 𝜑𝑅 ∈ Ring )
3 mxidlmaxv.3 ( 𝜑𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) )
4 mxidlmaxv.4 ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
5 mxidlmaxv.5 ( 𝜑𝑀𝐼 )
6 mxidlmaxv.6 ( 𝜑𝑋 ∈ ( 𝐼𝑀 ) )
7 1 mxidlmax ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀𝐼 ) ) → ( 𝐼 = 𝑀𝐼 = 𝐵 ) )
8 2 3 4 5 7 syl22anc ( 𝜑 → ( 𝐼 = 𝑀𝐼 = 𝐵 ) )
9 6 eldifad ( 𝜑𝑋𝐼 )
10 6 eldifbd ( 𝜑 → ¬ 𝑋𝑀 )
11 nelne1 ( ( 𝑋𝐼 ∧ ¬ 𝑋𝑀 ) → 𝐼𝑀 )
12 9 10 11 syl2anc ( 𝜑𝐼𝑀 )
13 12 neneqd ( 𝜑 → ¬ 𝐼 = 𝑀 )
14 8 13 orcnd ( 𝜑𝐼 = 𝐵 )