Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → 𝐹 ∈ 𝑃 ) |
2 |
|
simp3 |
⊢ ( ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → 𝐺 ∈ 𝑃 ) |
3 |
|
simp1 |
⊢ ( ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ) |
4 |
3
|
elfvexd |
⊢ ( ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → 𝑉 ∈ V ) |
5 |
|
elmzpcl |
⊢ ( 𝑉 ∈ V → ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ↔ ( 𝑃 ⊆ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ∧ ( ( ∀ 𝑓 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑓 } ) ∈ 𝑃 ∧ ∀ 𝑓 ∈ 𝑉 ( 𝑔 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑔 ‘ 𝑓 ) ) ∈ 𝑃 ) ∧ ∀ 𝑓 ∈ 𝑃 ∀ 𝑔 ∈ 𝑃 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑃 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑃 ) ) ) ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ↔ ( 𝑃 ⊆ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ∧ ( ( ∀ 𝑓 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑓 } ) ∈ 𝑃 ∧ ∀ 𝑓 ∈ 𝑉 ( 𝑔 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑔 ‘ 𝑓 ) ) ∈ 𝑃 ) ∧ ∀ 𝑓 ∈ 𝑃 ∀ 𝑔 ∈ 𝑃 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑃 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑃 ) ) ) ) ) |
7 |
3 6
|
mpbid |
⊢ ( ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝑃 ⊆ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ∧ ( ( ∀ 𝑓 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑓 } ) ∈ 𝑃 ∧ ∀ 𝑓 ∈ 𝑉 ( 𝑔 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑔 ‘ 𝑓 ) ) ∈ 𝑃 ) ∧ ∀ 𝑓 ∈ 𝑃 ∀ 𝑔 ∈ 𝑃 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑃 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑃 ) ) ) ) |
8 |
7
|
simprrd |
⊢ ( ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ∀ 𝑓 ∈ 𝑃 ∀ 𝑔 ∈ 𝑃 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑃 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑃 ) ) |
9 |
|
oveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∘f + 𝑔 ) = ( 𝐹 ∘f + 𝑔 ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑃 ↔ ( 𝐹 ∘f + 𝑔 ) ∈ 𝑃 ) ) |
11 |
|
oveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∘f · 𝑔 ) = ( 𝐹 ∘f · 𝑔 ) ) |
12 |
11
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ∘f · 𝑔 ) ∈ 𝑃 ↔ ( 𝐹 ∘f · 𝑔 ) ∈ 𝑃 ) ) |
13 |
10 12
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑃 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑃 ) ↔ ( ( 𝐹 ∘f + 𝑔 ) ∈ 𝑃 ∧ ( 𝐹 ∘f · 𝑔 ) ∈ 𝑃 ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑔 = 𝐺 → ( 𝐹 ∘f + 𝑔 ) = ( 𝐹 ∘f + 𝐺 ) ) |
15 |
14
|
eleq1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝐹 ∘f + 𝑔 ) ∈ 𝑃 ↔ ( 𝐹 ∘f + 𝐺 ) ∈ 𝑃 ) ) |
16 |
|
oveq2 |
⊢ ( 𝑔 = 𝐺 → ( 𝐹 ∘f · 𝑔 ) = ( 𝐹 ∘f · 𝐺 ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝐹 ∘f · 𝑔 ) ∈ 𝑃 ↔ ( 𝐹 ∘f · 𝐺 ) ∈ 𝑃 ) ) |
18 |
15 17
|
anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝐹 ∘f + 𝑔 ) ∈ 𝑃 ∧ ( 𝐹 ∘f · 𝑔 ) ∈ 𝑃 ) ↔ ( ( 𝐹 ∘f + 𝐺 ) ∈ 𝑃 ∧ ( 𝐹 ∘f · 𝐺 ) ∈ 𝑃 ) ) ) |
19 |
13 18
|
rspc2va |
⊢ ( ( ( 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) ∧ ∀ 𝑓 ∈ 𝑃 ∀ 𝑔 ∈ 𝑃 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑃 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑃 ) ) → ( ( 𝐹 ∘f + 𝐺 ) ∈ 𝑃 ∧ ( 𝐹 ∘f · 𝐺 ) ∈ 𝑃 ) ) |
20 |
1 2 8 19
|
syl21anc |
⊢ ( ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( ( 𝐹 ∘f + 𝐺 ) ∈ 𝑃 ∧ ( 𝐹 ∘f · 𝐺 ) ∈ 𝑃 ) ) |