Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑣 = 𝑉 → ( ℤ ↑m 𝑣 ) = ( ℤ ↑m 𝑉 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝑣 = 𝑉 → ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) = ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ) |
3 |
2
|
pweqd |
⊢ ( 𝑣 = 𝑉 → 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) = 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ) |
4 |
1
|
xpeq1d |
⊢ ( 𝑣 = 𝑉 → ( ( ℤ ↑m 𝑣 ) × { 𝑎 } ) = ( ( ℤ ↑m 𝑉 ) × { 𝑎 } ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑣 = 𝑉 → ( ( ( ℤ ↑m 𝑣 ) × { 𝑎 } ) ∈ 𝑝 ↔ ( ( ℤ ↑m 𝑉 ) × { 𝑎 } ) ∈ 𝑝 ) ) |
6 |
5
|
ralbidv |
⊢ ( 𝑣 = 𝑉 → ( ∀ 𝑎 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑎 } ) ∈ 𝑝 ↔ ∀ 𝑎 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑎 } ) ∈ 𝑝 ) ) |
7 |
|
sneq |
⊢ ( 𝑎 = 𝑖 → { 𝑎 } = { 𝑖 } ) |
8 |
7
|
xpeq2d |
⊢ ( 𝑎 = 𝑖 → ( ( ℤ ↑m 𝑉 ) × { 𝑎 } ) = ( ( ℤ ↑m 𝑉 ) × { 𝑖 } ) ) |
9 |
8
|
eleq1d |
⊢ ( 𝑎 = 𝑖 → ( ( ( ℤ ↑m 𝑉 ) × { 𝑎 } ) ∈ 𝑝 ↔ ( ( ℤ ↑m 𝑉 ) × { 𝑖 } ) ∈ 𝑝 ) ) |
10 |
9
|
cbvralvw |
⊢ ( ∀ 𝑎 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑎 } ) ∈ 𝑝 ↔ ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑖 } ) ∈ 𝑝 ) |
11 |
6 10
|
bitrdi |
⊢ ( 𝑣 = 𝑉 → ( ∀ 𝑎 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑎 } ) ∈ 𝑝 ↔ ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑖 } ) ∈ 𝑝 ) ) |
12 |
1
|
mpteq1d |
⊢ ( 𝑣 = 𝑉 → ( 𝑐 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑐 ‘ 𝑏 ) ) = ( 𝑐 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑐 ‘ 𝑏 ) ) ) |
13 |
12
|
eleq1d |
⊢ ( 𝑣 = 𝑉 → ( ( 𝑐 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑐 ‘ 𝑏 ) ) ∈ 𝑝 ↔ ( 𝑐 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑐 ‘ 𝑏 ) ) ∈ 𝑝 ) ) |
14 |
13
|
raleqbi1dv |
⊢ ( 𝑣 = 𝑉 → ( ∀ 𝑏 ∈ 𝑣 ( 𝑐 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑐 ‘ 𝑏 ) ) ∈ 𝑝 ↔ ∀ 𝑏 ∈ 𝑉 ( 𝑐 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑐 ‘ 𝑏 ) ) ∈ 𝑝 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑏 = 𝑗 → ( 𝑐 ‘ 𝑏 ) = ( 𝑐 ‘ 𝑗 ) ) |
16 |
15
|
mpteq2dv |
⊢ ( 𝑏 = 𝑗 → ( 𝑐 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑐 ‘ 𝑏 ) ) = ( 𝑐 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑐 ‘ 𝑗 ) ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑏 = 𝑗 → ( ( 𝑐 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑐 ‘ 𝑏 ) ) ∈ 𝑝 ↔ ( 𝑐 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑐 ‘ 𝑗 ) ) ∈ 𝑝 ) ) |
18 |
|
fveq1 |
⊢ ( 𝑐 = 𝑥 → ( 𝑐 ‘ 𝑗 ) = ( 𝑥 ‘ 𝑗 ) ) |
19 |
18
|
cbvmptv |
⊢ ( 𝑐 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑐 ‘ 𝑗 ) ) = ( 𝑥 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑥 ‘ 𝑗 ) ) |
20 |
19
|
eleq1i |
⊢ ( ( 𝑐 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑐 ‘ 𝑗 ) ) ∈ 𝑝 ↔ ( 𝑥 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) |
21 |
17 20
|
bitrdi |
⊢ ( 𝑏 = 𝑗 → ( ( 𝑐 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑐 ‘ 𝑏 ) ) ∈ 𝑝 ↔ ( 𝑥 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) ) |
22 |
21
|
cbvralvw |
⊢ ( ∀ 𝑏 ∈ 𝑉 ( 𝑐 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑐 ‘ 𝑏 ) ) ∈ 𝑝 ↔ ∀ 𝑗 ∈ 𝑉 ( 𝑥 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) |
23 |
14 22
|
bitrdi |
⊢ ( 𝑣 = 𝑉 → ( ∀ 𝑏 ∈ 𝑣 ( 𝑐 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑐 ‘ 𝑏 ) ) ∈ 𝑝 ↔ ∀ 𝑗 ∈ 𝑉 ( 𝑥 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) ) |
24 |
11 23
|
anbi12d |
⊢ ( 𝑣 = 𝑉 → ( ( ∀ 𝑎 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑎 } ) ∈ 𝑝 ∧ ∀ 𝑏 ∈ 𝑣 ( 𝑐 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑐 ‘ 𝑏 ) ) ∈ 𝑝 ) ↔ ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗 ∈ 𝑉 ( 𝑥 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) ) ) |
25 |
24
|
anbi1d |
⊢ ( 𝑣 = 𝑉 → ( ( ( ∀ 𝑎 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑎 } ) ∈ 𝑝 ∧ ∀ 𝑏 ∈ 𝑣 ( 𝑐 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑐 ‘ 𝑏 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓 ∈ 𝑝 ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) ) ↔ ( ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗 ∈ 𝑉 ( 𝑥 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓 ∈ 𝑝 ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) ) ) ) |
26 |
3 25
|
rabeqbidv |
⊢ ( 𝑣 = 𝑉 → { 𝑝 ∈ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) ∣ ( ( ∀ 𝑎 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑎 } ) ∈ 𝑝 ∧ ∀ 𝑏 ∈ 𝑣 ( 𝑐 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑐 ‘ 𝑏 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓 ∈ 𝑝 ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) ) } = { 𝑝 ∈ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ∣ ( ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗 ∈ 𝑉 ( 𝑥 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓 ∈ 𝑝 ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) ) } ) |
27 |
|
df-mzpcl |
⊢ mzPolyCld = ( 𝑣 ∈ V ↦ { 𝑝 ∈ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) ∣ ( ( ∀ 𝑎 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑎 } ) ∈ 𝑝 ∧ ∀ 𝑏 ∈ 𝑣 ( 𝑐 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑐 ‘ 𝑏 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓 ∈ 𝑝 ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) ) } ) |
28 |
|
ovex |
⊢ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ∈ V |
29 |
28
|
pwex |
⊢ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ∈ V |
30 |
29
|
rabex |
⊢ { 𝑝 ∈ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ∣ ( ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗 ∈ 𝑉 ( 𝑥 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓 ∈ 𝑝 ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) ) } ∈ V |
31 |
26 27 30
|
fvmpt |
⊢ ( 𝑉 ∈ V → ( mzPolyCld ‘ 𝑉 ) = { 𝑝 ∈ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ∣ ( ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗 ∈ 𝑉 ( 𝑥 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓 ∈ 𝑝 ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) ) } ) |