Step |
Hyp |
Ref |
Expression |
1 |
|
elfvex |
⊢ ( 𝐴 ∈ ( mzPoly ‘ 𝐵 ) → 𝐵 ∈ V ) |
2 |
|
fveq2 |
⊢ ( 𝑑 = 𝐵 → ( mzPoly ‘ 𝑑 ) = ( mzPoly ‘ 𝐵 ) ) |
3 |
2
|
eleq2d |
⊢ ( 𝑑 = 𝐵 → ( 𝐴 ∈ ( mzPoly ‘ 𝑑 ) ↔ 𝐴 ∈ ( mzPoly ‘ 𝐵 ) ) ) |
4 |
|
sseq2 |
⊢ ( 𝑑 = 𝐵 → ( 𝑎 ⊆ 𝑑 ↔ 𝑎 ⊆ 𝐵 ) ) |
5 |
|
oveq2 |
⊢ ( 𝑑 = 𝐵 → ( ℤ ↑m 𝑑 ) = ( ℤ ↑m 𝐵 ) ) |
6 |
5
|
mpteq1d |
⊢ ( 𝑑 = 𝐵 → ( 𝑐 ∈ ( ℤ ↑m 𝑑 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) = ( 𝑐 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) |
7 |
6
|
eqeq2d |
⊢ ( 𝑑 = 𝐵 → ( 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝑑 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ↔ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) ) |
8 |
4 7
|
anbi12d |
⊢ ( 𝑑 = 𝐵 → ( ( 𝑎 ⊆ 𝑑 ∧ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝑑 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) ) ) |
9 |
8
|
2rexbidv |
⊢ ( 𝑑 = 𝐵 → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝑑 ∧ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝑑 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) ) ) |
10 |
3 9
|
imbi12d |
⊢ ( 𝑑 = 𝐵 → ( ( 𝐴 ∈ ( mzPoly ‘ 𝑑 ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝑑 ∧ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝑑 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) ) ↔ ( 𝐴 ∈ ( mzPoly ‘ 𝐵 ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) ) ) ) |
11 |
|
vex |
⊢ 𝑑 ∈ V |
12 |
11
|
mzpcompact2lem |
⊢ ( 𝐴 ∈ ( mzPoly ‘ 𝑑 ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝑑 ∧ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝑑 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) ) |
13 |
10 12
|
vtoclg |
⊢ ( 𝐵 ∈ V → ( 𝐴 ∈ ( mzPoly ‘ 𝐵 ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) ) ) |
14 |
1 13
|
mpcom |
⊢ ( 𝐴 ∈ ( mzPoly ‘ 𝐵 ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) ) |