Metamath Proof Explorer


Theorem mzpconst

Description: Constant functions are polynomial. See also mzpconstmpt . (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion mzpconst ( ( 𝑉 ∈ V ∧ 𝐶 ∈ ℤ ) → ( ( ℤ ↑m 𝑉 ) × { 𝐶 } ) ∈ ( mzPoly ‘ 𝑉 ) )

Proof

Step Hyp Ref Expression
1 mzpincl ( 𝑉 ∈ V → ( mzPoly ‘ 𝑉 ) ∈ ( mzPolyCld ‘ 𝑉 ) )
2 mzpcl1 ( ( ( mzPoly ‘ 𝑉 ) ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝐶 ∈ ℤ ) → ( ( ℤ ↑m 𝑉 ) × { 𝐶 } ) ∈ ( mzPoly ‘ 𝑉 ) )
3 1 2 sylan ( ( 𝑉 ∈ V ∧ 𝐶 ∈ ℤ ) → ( ( ℤ ↑m 𝑉 ) × { 𝐶 } ) ∈ ( mzPoly ‘ 𝑉 ) )