Metamath Proof Explorer


Theorem mzpf

Description: A polynomial function is a function from the coordinate space to the integers. (Contributed by Stefan O'Rear, 5-Oct-2014)

Ref Expression
Assertion mzpf ( 𝐹 ∈ ( mzPoly ‘ 𝑉 ) → 𝐹 : ( ℤ ↑m 𝑉 ) ⟶ ℤ )

Proof

Step Hyp Ref Expression
1 elfvex ( 𝐹 ∈ ( mzPoly ‘ 𝑉 ) → 𝑉 ∈ V )
2 mzpval ( 𝑉 ∈ V → ( mzPoly ‘ 𝑉 ) = ( mzPolyCld ‘ 𝑉 ) )
3 mzpclall ( 𝑉 ∈ V → ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ∈ ( mzPolyCld ‘ 𝑉 ) )
4 intss1 ( ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ∈ ( mzPolyCld ‘ 𝑉 ) → ( mzPolyCld ‘ 𝑉 ) ⊆ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) )
5 3 4 syl ( 𝑉 ∈ V → ( mzPolyCld ‘ 𝑉 ) ⊆ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) )
6 2 5 eqsstrd ( 𝑉 ∈ V → ( mzPoly ‘ 𝑉 ) ⊆ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) )
7 1 6 syl ( 𝐹 ∈ ( mzPoly ‘ 𝑉 ) → ( mzPoly ‘ 𝑉 ) ⊆ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) )
8 7 sselda ( ( 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ∧ 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → 𝐹 ∈ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) )
9 8 anidms ( 𝐹 ∈ ( mzPoly ‘ 𝑉 ) → 𝐹 ∈ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) )
10 zex ℤ ∈ V
11 ovex ( ℤ ↑m 𝑉 ) ∈ V
12 10 11 elmap ( 𝐹 ∈ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ↔ 𝐹 : ( ℤ ↑m 𝑉 ) ⟶ ℤ )
13 9 12 sylib ( 𝐹 ∈ ( mzPoly ‘ 𝑉 ) → 𝐹 : ( ℤ ↑m 𝑉 ) ⟶ ℤ )