Step |
Hyp |
Ref |
Expression |
1 |
|
elfvex |
⊢ ( 𝐹 ∈ ( mzPoly ‘ 𝑉 ) → 𝑉 ∈ V ) |
2 |
|
mzpval |
⊢ ( 𝑉 ∈ V → ( mzPoly ‘ 𝑉 ) = ∩ ( mzPolyCld ‘ 𝑉 ) ) |
3 |
|
mzpclall |
⊢ ( 𝑉 ∈ V → ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ∈ ( mzPolyCld ‘ 𝑉 ) ) |
4 |
|
intss1 |
⊢ ( ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ∈ ( mzPolyCld ‘ 𝑉 ) → ∩ ( mzPolyCld ‘ 𝑉 ) ⊆ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ) |
5 |
3 4
|
syl |
⊢ ( 𝑉 ∈ V → ∩ ( mzPolyCld ‘ 𝑉 ) ⊆ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ) |
6 |
2 5
|
eqsstrd |
⊢ ( 𝑉 ∈ V → ( mzPoly ‘ 𝑉 ) ⊆ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ) |
7 |
1 6
|
syl |
⊢ ( 𝐹 ∈ ( mzPoly ‘ 𝑉 ) → ( mzPoly ‘ 𝑉 ) ⊆ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ) |
8 |
7
|
sselda |
⊢ ( ( 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ∧ 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → 𝐹 ∈ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ) |
9 |
8
|
anidms |
⊢ ( 𝐹 ∈ ( mzPoly ‘ 𝑉 ) → 𝐹 ∈ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ) |
10 |
|
zex |
⊢ ℤ ∈ V |
11 |
|
ovex |
⊢ ( ℤ ↑m 𝑉 ) ∈ V |
12 |
10 11
|
elmap |
⊢ ( 𝐹 ∈ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ↔ 𝐹 : ( ℤ ↑m 𝑉 ) ⟶ ℤ ) |
13 |
9 12
|
sylib |
⊢ ( 𝐹 ∈ ( mzPoly ‘ 𝑉 ) → 𝐹 : ( ℤ ↑m 𝑉 ) ⟶ ℤ ) |