Step |
Hyp |
Ref |
Expression |
1 |
|
coires1 |
⊢ ( 𝑥 ∘ ( I ↾ 𝑉 ) ) = ( 𝑥 ↾ 𝑉 ) |
2 |
1
|
fveq2i |
⊢ ( 𝐹 ‘ ( 𝑥 ∘ ( I ↾ 𝑉 ) ) ) = ( 𝐹 ‘ ( 𝑥 ↾ 𝑉 ) ) |
3 |
2
|
mpteq2i |
⊢ ( 𝑥 ∈ ( ℤ ↑m 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥 ∘ ( I ↾ 𝑉 ) ) ) ) = ( 𝑥 ∈ ( ℤ ↑m 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥 ↾ 𝑉 ) ) ) |
4 |
|
simp1 |
⊢ ( ( 𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → 𝑊 ∈ V ) |
5 |
|
simp3 |
⊢ ( ( 𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) |
6 |
|
f1oi |
⊢ ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ 𝑉 |
7 |
|
f1of |
⊢ ( ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ 𝑉 → ( I ↾ 𝑉 ) : 𝑉 ⟶ 𝑉 ) |
8 |
6 7
|
ax-mp |
⊢ ( I ↾ 𝑉 ) : 𝑉 ⟶ 𝑉 |
9 |
|
fss |
⊢ ( ( ( I ↾ 𝑉 ) : 𝑉 ⟶ 𝑉 ∧ 𝑉 ⊆ 𝑊 ) → ( I ↾ 𝑉 ) : 𝑉 ⟶ 𝑊 ) |
10 |
8 9
|
mpan |
⊢ ( 𝑉 ⊆ 𝑊 → ( I ↾ 𝑉 ) : 𝑉 ⟶ 𝑊 ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → ( I ↾ 𝑉 ) : 𝑉 ⟶ 𝑊 ) |
12 |
|
mzprename |
⊢ ( ( 𝑊 ∈ V ∧ 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ∧ ( I ↾ 𝑉 ) : 𝑉 ⟶ 𝑊 ) → ( 𝑥 ∈ ( ℤ ↑m 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥 ∘ ( I ↾ 𝑉 ) ) ) ) ∈ ( mzPoly ‘ 𝑊 ) ) |
13 |
4 5 11 12
|
syl3anc |
⊢ ( ( 𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → ( 𝑥 ∈ ( ℤ ↑m 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥 ∘ ( I ↾ 𝑉 ) ) ) ) ∈ ( mzPoly ‘ 𝑊 ) ) |
14 |
3 13
|
eqeltrrid |
⊢ ( ( 𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → ( 𝑥 ∈ ( ℤ ↑m 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥 ↾ 𝑉 ) ) ) ∈ ( mzPoly ‘ 𝑊 ) ) |