Metamath Proof Explorer


Theorem mzpresrename

Description: A polynomial is a polynomial over all larger index sets. (Contributed by Stefan O'Rear, 5-Oct-2014) (Revised by Stefan O'Rear, 5-Jun-2015)

Ref Expression
Assertion mzpresrename ( ( 𝑊 ∈ V ∧ 𝑉𝑊𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → ( 𝑥 ∈ ( ℤ ↑m 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥𝑉 ) ) ) ∈ ( mzPoly ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 coires1 ( 𝑥 ∘ ( I ↾ 𝑉 ) ) = ( 𝑥𝑉 )
2 1 fveq2i ( 𝐹 ‘ ( 𝑥 ∘ ( I ↾ 𝑉 ) ) ) = ( 𝐹 ‘ ( 𝑥𝑉 ) )
3 2 mpteq2i ( 𝑥 ∈ ( ℤ ↑m 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥 ∘ ( I ↾ 𝑉 ) ) ) ) = ( 𝑥 ∈ ( ℤ ↑m 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥𝑉 ) ) )
4 simp1 ( ( 𝑊 ∈ V ∧ 𝑉𝑊𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → 𝑊 ∈ V )
5 simp3 ( ( 𝑊 ∈ V ∧ 𝑉𝑊𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → 𝐹 ∈ ( mzPoly ‘ 𝑉 ) )
6 f1oi ( I ↾ 𝑉 ) : 𝑉1-1-onto𝑉
7 f1of ( ( I ↾ 𝑉 ) : 𝑉1-1-onto𝑉 → ( I ↾ 𝑉 ) : 𝑉𝑉 )
8 6 7 ax-mp ( I ↾ 𝑉 ) : 𝑉𝑉
9 fss ( ( ( I ↾ 𝑉 ) : 𝑉𝑉𝑉𝑊 ) → ( I ↾ 𝑉 ) : 𝑉𝑊 )
10 8 9 mpan ( 𝑉𝑊 → ( I ↾ 𝑉 ) : 𝑉𝑊 )
11 10 3ad2ant2 ( ( 𝑊 ∈ V ∧ 𝑉𝑊𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → ( I ↾ 𝑉 ) : 𝑉𝑊 )
12 mzprename ( ( 𝑊 ∈ V ∧ 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ∧ ( I ↾ 𝑉 ) : 𝑉𝑊 ) → ( 𝑥 ∈ ( ℤ ↑m 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥 ∘ ( I ↾ 𝑉 ) ) ) ) ∈ ( mzPoly ‘ 𝑊 ) )
13 4 5 11 12 syl3anc ( ( 𝑊 ∈ V ∧ 𝑉𝑊𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → ( 𝑥 ∈ ( ℤ ↑m 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥 ∘ ( I ↾ 𝑉 ) ) ) ) ∈ ( mzPoly ‘ 𝑊 ) )
14 3 13 eqeltrrid ( ( 𝑊 ∈ V ∧ 𝑉𝑊𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → ( 𝑥 ∈ ( ℤ ↑m 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥𝑉 ) ) ) ∈ ( mzPoly ‘ 𝑊 ) )