| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ¬  ∀ 𝑢 ¬  𝑢  ∈  𝑥  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ¬  ∀ 𝑢 ¬  𝑢  ∈  𝑥 ) ) | 
						
							| 2 |  | df-ex | ⊢ ( ∃ 𝑢 𝑢  ∈  𝑥  ↔  ¬  ∀ 𝑢 ¬  𝑢  ∈  𝑥 ) | 
						
							| 3 | 2 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑢 𝑢  ∈  𝑥  ↔  ∀ 𝑥  ∈  𝐴 ¬  ∀ 𝑢 ¬  𝑢  ∈  𝑥 ) | 
						
							| 4 |  | alnex | ⊢ ( ∀ 𝑥 ¬  ( 𝑥  ∈  𝐴  ∧  ∀ 𝑢 ¬  𝑢  ∈  𝑥 )  ↔  ¬  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ∀ 𝑢 ¬  𝑢  ∈  𝑥 ) ) | 
						
							| 5 |  | imnang | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ¬  ∀ 𝑢 ¬  𝑢  ∈  𝑥 )  ↔  ∀ 𝑥 ¬  ( 𝑥  ∈  𝐴  ∧  ∀ 𝑢 ¬  𝑢  ∈  𝑥 ) ) | 
						
							| 6 |  | 0el | ⊢ ( ∅  ∈  𝐴  ↔  ∃ 𝑥  ∈  𝐴 ∀ 𝑢 ¬  𝑢  ∈  𝑥 ) | 
						
							| 7 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐴 ∀ 𝑢 ¬  𝑢  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ∀ 𝑢 ¬  𝑢  ∈  𝑥 ) ) | 
						
							| 8 | 6 7 | bitri | ⊢ ( ∅  ∈  𝐴  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ∀ 𝑢 ¬  𝑢  ∈  𝑥 ) ) | 
						
							| 9 | 8 | notbii | ⊢ ( ¬  ∅  ∈  𝐴  ↔  ¬  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ∀ 𝑢 ¬  𝑢  ∈  𝑥 ) ) | 
						
							| 10 | 4 5 9 | 3bitr4ri | ⊢ ( ¬  ∅  ∈  𝐴  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ¬  ∀ 𝑢 ¬  𝑢  ∈  𝑥 ) ) | 
						
							| 11 | 1 3 10 | 3bitr4ri | ⊢ ( ¬  ∅  ∈  𝐴  ↔  ∀ 𝑥  ∈  𝐴 ∃ 𝑢 𝑢  ∈  𝑥 ) |