Metamath Proof Explorer


Theorem n0el

Description: Negated membership of the empty set in another class. (Contributed by Rodolfo Medina, 25-Sep-2010)

Ref Expression
Assertion n0el ( ¬ ∅ ∈ 𝐴 ↔ ∀ 𝑥𝐴𝑢 𝑢𝑥 )

Proof

Step Hyp Ref Expression
1 df-ral ( ∀ 𝑥𝐴 ¬ ∀ 𝑢 ¬ 𝑢𝑥 ↔ ∀ 𝑥 ( 𝑥𝐴 → ¬ ∀ 𝑢 ¬ 𝑢𝑥 ) )
2 df-ex ( ∃ 𝑢 𝑢𝑥 ↔ ¬ ∀ 𝑢 ¬ 𝑢𝑥 )
3 2 ralbii ( ∀ 𝑥𝐴𝑢 𝑢𝑥 ↔ ∀ 𝑥𝐴 ¬ ∀ 𝑢 ¬ 𝑢𝑥 )
4 alnex ( ∀ 𝑥 ¬ ( 𝑥𝐴 ∧ ∀ 𝑢 ¬ 𝑢𝑥 ) ↔ ¬ ∃ 𝑥 ( 𝑥𝐴 ∧ ∀ 𝑢 ¬ 𝑢𝑥 ) )
5 imnang ( ∀ 𝑥 ( 𝑥𝐴 → ¬ ∀ 𝑢 ¬ 𝑢𝑥 ) ↔ ∀ 𝑥 ¬ ( 𝑥𝐴 ∧ ∀ 𝑢 ¬ 𝑢𝑥 ) )
6 0el ( ∅ ∈ 𝐴 ↔ ∃ 𝑥𝐴𝑢 ¬ 𝑢𝑥 )
7 df-rex ( ∃ 𝑥𝐴𝑢 ¬ 𝑢𝑥 ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ∀ 𝑢 ¬ 𝑢𝑥 ) )
8 6 7 bitri ( ∅ ∈ 𝐴 ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ∀ 𝑢 ¬ 𝑢𝑥 ) )
9 8 notbii ( ¬ ∅ ∈ 𝐴 ↔ ¬ ∃ 𝑥 ( 𝑥𝐴 ∧ ∀ 𝑢 ¬ 𝑢𝑥 ) )
10 4 5 9 3bitr4ri ( ¬ ∅ ∈ 𝐴 ↔ ∀ 𝑥 ( 𝑥𝐴 → ¬ ∀ 𝑢 ¬ 𝑢𝑥 ) )
11 1 3 10 3bitr4ri ( ¬ ∅ ∈ 𝐴 ↔ ∀ 𝑥𝐴𝑢 𝑢𝑥 )