Metamath Proof Explorer


Theorem n0el3

Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 27-May-2021)

Ref Expression
Assertion n0el3 ( ¬ ∅ ∈ 𝐴 ↔ ( dom ( E ↾ 𝐴 ) / ( E ↾ 𝐴 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 n0elim ( ¬ ∅ ∈ 𝐴 → ( dom ( E ↾ 𝐴 ) / ( E ↾ 𝐴 ) ) = 𝐴 )
2 n0eldmqseq ( ( dom ( E ↾ 𝐴 ) / ( E ↾ 𝐴 ) ) = 𝐴 → ¬ ∅ ∈ 𝐴 )
3 1 2 impbii ( ¬ ∅ ∈ 𝐴 ↔ ( dom ( E ↾ 𝐴 ) / ( E ↾ 𝐴 ) ) = 𝐴 )