Description: Implication of that the empty set is not an element of a class. (Contributed by Peter Mazsa, 30-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | n0elim | ⊢ ( ¬ ∅ ∈ 𝐴 → ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0el2 | ⊢ ( ¬ ∅ ∈ 𝐴 ↔ dom ( ◡ E ↾ 𝐴 ) = 𝐴 ) | |
2 | 1 | biimpi | ⊢ ( ¬ ∅ ∈ 𝐴 → dom ( ◡ E ↾ 𝐴 ) = 𝐴 ) |
3 | 2 | qseq1d | ⊢ ( ¬ ∅ ∈ 𝐴 → ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = ( 𝐴 / ( ◡ E ↾ 𝐴 ) ) ) |
4 | qsresid | ⊢ ( 𝐴 / ( ◡ E ↾ 𝐴 ) ) = ( 𝐴 / ◡ E ) | |
5 | qsid | ⊢ ( 𝐴 / ◡ E ) = 𝐴 | |
6 | 4 5 | eqtri | ⊢ ( 𝐴 / ( ◡ E ↾ 𝐴 ) ) = 𝐴 |
7 | 3 6 | eqtrdi | ⊢ ( ¬ ∅ ∈ 𝐴 → ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) |