Metamath Proof Explorer


Theorem n0moeu

Description: A case of equivalence of "at most one" and "only one". (Contributed by FL, 6-Dec-2010)

Ref Expression
Assertion n0moeu ( 𝐴 ≠ ∅ → ( ∃* 𝑥 𝑥𝐴 ↔ ∃! 𝑥 𝑥𝐴 ) )

Proof

Step Hyp Ref Expression
1 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
2 1 biimpi ( 𝐴 ≠ ∅ → ∃ 𝑥 𝑥𝐴 )
3 2 biantrurd ( 𝐴 ≠ ∅ → ( ∃* 𝑥 𝑥𝐴 ↔ ( ∃ 𝑥 𝑥𝐴 ∧ ∃* 𝑥 𝑥𝐴 ) ) )
4 df-eu ( ∃! 𝑥 𝑥𝐴 ↔ ( ∃ 𝑥 𝑥𝐴 ∧ ∃* 𝑥 𝑥𝐴 ) )
5 3 4 bitr4di ( 𝐴 ≠ ∅ → ( ∃* 𝑥 𝑥𝐴 ↔ ∃! 𝑥 𝑥𝐴 ) )