Metamath Proof Explorer


Theorem n0rex

Description: There is an element in a nonempty class which is an element of the class. (Contributed by AV, 17-Dec-2020)

Ref Expression
Assertion n0rex ( 𝐴 ≠ ∅ → ∃ 𝑥𝐴 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 id ( 𝑥𝐴𝑥𝐴 )
2 1 ancli ( 𝑥𝐴 → ( 𝑥𝐴𝑥𝐴 ) )
3 2 eximi ( ∃ 𝑥 𝑥𝐴 → ∃ 𝑥 ( 𝑥𝐴𝑥𝐴 ) )
4 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
5 df-rex ( ∃ 𝑥𝐴 𝑥𝐴 ↔ ∃ 𝑥 ( 𝑥𝐴𝑥𝐴 ) )
6 3 4 5 3imtr4i ( 𝐴 ≠ ∅ → ∃ 𝑥𝐴 𝑥𝐴 )