Step |
Hyp |
Ref |
Expression |
1 |
|
issn |
⊢ ( ∃ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 → ∃ 𝑧 𝐴 = { 𝑧 } ) |
2 |
1
|
olcd |
⊢ ( ∃ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃ 𝑧 𝐴 = { 𝑧 } ) ) |
3 |
2
|
a1d |
⊢ ( ∃ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 → ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃ 𝑧 𝐴 = { 𝑧 } ) ) ) |
4 |
|
df-ne |
⊢ ( 𝑤 ≠ 𝑦 ↔ ¬ 𝑤 = 𝑦 ) |
5 |
4
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 ¬ 𝑤 = 𝑦 ) |
6 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ 𝐴 ¬ 𝑤 = 𝑦 ↔ ¬ ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 ) |
7 |
5 6
|
bitri |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ↔ ¬ ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 ) |
8 |
7
|
ralbii |
⊢ ( ∀ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ↔ ∀ 𝑤 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 ) |
9 |
|
ralnex |
⊢ ( ∀ 𝑤 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 ↔ ¬ ∃ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 ) |
10 |
8 9
|
bitri |
⊢ ( ∀ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ↔ ¬ ∃ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 ) |
11 |
|
neeq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ≠ 𝑦 ↔ 𝑥 ≠ 𝑦 ) ) |
12 |
11
|
rexbidv |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ) ) |
13 |
12
|
rspccva |
⊢ ( ( ∀ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ) |
14 |
13
|
reximdva0 |
⊢ ( ( ∀ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ) |
15 |
14
|
orcd |
⊢ ( ( ∀ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃ 𝑧 𝐴 = { 𝑧 } ) ) |
16 |
15
|
ex |
⊢ ( ∀ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 → ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃ 𝑧 𝐴 = { 𝑧 } ) ) ) |
17 |
10 16
|
sylbir |
⊢ ( ¬ ∃ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 → ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃ 𝑧 𝐴 = { 𝑧 } ) ) ) |
18 |
3 17
|
pm2.61i |
⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃ 𝑧 𝐴 = { 𝑧 } ) ) |