Metamath Proof Explorer


Theorem nabbib

Description: Not equivalent wff's correspond to not equal class abstractions. (Contributed by AV, 7-Apr-2019) (Proof shortened by Wolf Lammen, 25-Nov-2019) Definitial form. (Revised by Wolf Lammen, 5-Mar-2025)

Ref Expression
Assertion nabbib ( { 𝑥𝜑 } ≠ { 𝑥𝜓 } ↔ ∃ 𝑥 ( 𝜑 ↔ ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 df-ne ( { 𝑥𝜑 } ≠ { 𝑥𝜓 } ↔ ¬ { 𝑥𝜑 } = { 𝑥𝜓 } )
2 exnal ( ∃ 𝑥 ¬ ( 𝜑𝜓 ) ↔ ¬ ∀ 𝑥 ( 𝜑𝜓 ) )
3 xor3 ( ¬ ( 𝜑𝜓 ) ↔ ( 𝜑 ↔ ¬ 𝜓 ) )
4 3 exbii ( ∃ 𝑥 ¬ ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( 𝜑 ↔ ¬ 𝜓 ) )
5 2 4 bitr3i ( ¬ ∀ 𝑥 ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( 𝜑 ↔ ¬ 𝜓 ) )
6 abbib ( { 𝑥𝜑 } = { 𝑥𝜓 } ↔ ∀ 𝑥 ( 𝜑𝜓 ) )
7 5 6 xchnxbir ( ¬ { 𝑥𝜑 } = { 𝑥𝜓 } ↔ ∃ 𝑥 ( 𝜑 ↔ ¬ 𝜓 ) )
8 1 7 bitri ( { 𝑥𝜑 } ≠ { 𝑥𝜓 } ↔ ∃ 𝑥 ( 𝜑 ↔ ¬ 𝜓 ) )