Metamath Proof Explorer


Theorem nabctnabc

Description: not ( a -> ( b /\ c ) ) we can show: not a implies ( b /\ c ). (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypothesis nabctnabc.1 ¬ ( 𝜑 → ( 𝜓𝜒 ) )
Assertion nabctnabc ( ¬ 𝜑 → ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 nabctnabc.1 ¬ ( 𝜑 → ( 𝜓𝜒 ) )
2 pm4.61 ( ¬ ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( 𝜑 ∧ ¬ ( 𝜓𝜒 ) ) )
3 2 biimpi ( ¬ ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑 ∧ ¬ ( 𝜓𝜒 ) ) )
4 1 3 ax-mp ( 𝜑 ∧ ¬ ( 𝜓𝜒 ) )
5 4 simpli 𝜑
6 4 simpri ¬ ( 𝜓𝜒 )
7 5 6 2th ( 𝜑 ↔ ¬ ( 𝜓𝜒 ) )
8 bicom ( ( 𝜑 ↔ ¬ ( 𝜓𝜒 ) ) ↔ ( ¬ ( 𝜓𝜒 ) ↔ 𝜑 ) )
9 8 biimpi ( ( 𝜑 ↔ ¬ ( 𝜓𝜒 ) ) → ( ¬ ( 𝜓𝜒 ) ↔ 𝜑 ) )
10 7 9 ax-mp ( ¬ ( 𝜓𝜒 ) ↔ 𝜑 )
11 10 biimpi ( ¬ ( 𝜓𝜒 ) → 𝜑 )
12 11 con3i ( ¬ 𝜑 → ¬ ¬ ( 𝜓𝜒 ) )
13 12 notnotrd ( ¬ 𝜑 → ( 𝜓𝜒 ) )