| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nabctnabc.1 |
⊢ ¬ ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) |
| 2 |
|
pm4.61 |
⊢ ( ¬ ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) ↔ ( 𝜑 ∧ ¬ ( 𝜓 ∧ 𝜒 ) ) ) |
| 3 |
2
|
biimpi |
⊢ ( ¬ ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( 𝜑 ∧ ¬ ( 𝜓 ∧ 𝜒 ) ) ) |
| 4 |
1 3
|
ax-mp |
⊢ ( 𝜑 ∧ ¬ ( 𝜓 ∧ 𝜒 ) ) |
| 5 |
4
|
simpli |
⊢ 𝜑 |
| 6 |
4
|
simpri |
⊢ ¬ ( 𝜓 ∧ 𝜒 ) |
| 7 |
5 6
|
2th |
⊢ ( 𝜑 ↔ ¬ ( 𝜓 ∧ 𝜒 ) ) |
| 8 |
|
bicom |
⊢ ( ( 𝜑 ↔ ¬ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ¬ ( 𝜓 ∧ 𝜒 ) ↔ 𝜑 ) ) |
| 9 |
8
|
biimpi |
⊢ ( ( 𝜑 ↔ ¬ ( 𝜓 ∧ 𝜒 ) ) → ( ¬ ( 𝜓 ∧ 𝜒 ) ↔ 𝜑 ) ) |
| 10 |
7 9
|
ax-mp |
⊢ ( ¬ ( 𝜓 ∧ 𝜒 ) ↔ 𝜑 ) |
| 11 |
10
|
biimpi |
⊢ ( ¬ ( 𝜓 ∧ 𝜒 ) → 𝜑 ) |
| 12 |
11
|
con3i |
⊢ ( ¬ 𝜑 → ¬ ¬ ( 𝜓 ∧ 𝜒 ) ) |
| 13 |
12
|
notnotrd |
⊢ ( ¬ 𝜑 → ( 𝜓 ∧ 𝜒 ) ) |