Metamath Proof Explorer


Theorem nacsfg

Description: In a Noetherian-type closure system, all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypothesis isnacs.f 𝐹 = ( mrCls ‘ 𝐶 )
Assertion nacsfg ( ( 𝐶 ∈ ( NoeACS ‘ 𝑋 ) ∧ 𝑆𝐶 ) → ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹𝑔 ) )

Proof

Step Hyp Ref Expression
1 isnacs.f 𝐹 = ( mrCls ‘ 𝐶 )
2 1 isnacs ( 𝐶 ∈ ( NoeACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ ∀ 𝑠𝐶𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑠 = ( 𝐹𝑔 ) ) )
3 2 simprbi ( 𝐶 ∈ ( NoeACS ‘ 𝑋 ) → ∀ 𝑠𝐶𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑠 = ( 𝐹𝑔 ) )
4 eqeq1 ( 𝑠 = 𝑆 → ( 𝑠 = ( 𝐹𝑔 ) ↔ 𝑆 = ( 𝐹𝑔 ) ) )
5 4 rexbidv ( 𝑠 = 𝑆 → ( ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑠 = ( 𝐹𝑔 ) ↔ ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹𝑔 ) ) )
6 5 rspcva ( ( 𝑆𝐶 ∧ ∀ 𝑠𝐶𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑠 = ( 𝐹𝑔 ) ) → ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹𝑔 ) )
7 3 6 sylan2 ( ( 𝑆𝐶𝐶 ∈ ( NoeACS ‘ 𝑋 ) ) → ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹𝑔 ) )
8 7 ancoms ( ( 𝐶 ∈ ( NoeACS ‘ 𝑋 ) ∧ 𝑆𝐶 ) → ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹𝑔 ) )