Step |
Hyp |
Ref |
Expression |
1 |
|
isnacs.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
2 |
1
|
isnacs |
⊢ ( 𝐶 ∈ ( NoeACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝐶 ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑠 = ( 𝐹 ‘ 𝑔 ) ) ) |
3 |
2
|
simprbi |
⊢ ( 𝐶 ∈ ( NoeACS ‘ 𝑋 ) → ∀ 𝑠 ∈ 𝐶 ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑠 = ( 𝐹 ‘ 𝑔 ) ) |
4 |
|
eqeq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 = ( 𝐹 ‘ 𝑔 ) ↔ 𝑆 = ( 𝐹 ‘ 𝑔 ) ) ) |
5 |
4
|
rexbidv |
⊢ ( 𝑠 = 𝑆 → ( ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑠 = ( 𝐹 ‘ 𝑔 ) ↔ ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹 ‘ 𝑔 ) ) ) |
6 |
5
|
rspcva |
⊢ ( ( 𝑆 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝐶 ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑠 = ( 𝐹 ‘ 𝑔 ) ) → ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹 ‘ 𝑔 ) ) |
7 |
3 6
|
sylan2 |
⊢ ( ( 𝑆 ∈ 𝐶 ∧ 𝐶 ∈ ( NoeACS ‘ 𝑋 ) ) → ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹 ‘ 𝑔 ) ) |
8 |
7
|
ancoms |
⊢ ( ( 𝐶 ∈ ( NoeACS ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐶 ) → ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹 ‘ 𝑔 ) ) |