Metamath Proof Explorer


Theorem nadd32

Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Assertion nadd32 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +no 𝐵 ) +no 𝐶 ) = ( ( 𝐴 +no 𝐶 ) +no 𝐵 ) )

Proof

Step Hyp Ref Expression
1 naddcom ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) = ( 𝐶 +no 𝐵 ) )
2 1 3adant1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) = ( 𝐶 +no 𝐵 ) )
3 2 oveq2d ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 +no ( 𝐵 +no 𝐶 ) ) = ( 𝐴 +no ( 𝐶 +no 𝐵 ) ) )
4 naddass ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +no 𝐵 ) +no 𝐶 ) = ( 𝐴 +no ( 𝐵 +no 𝐶 ) ) )
5 naddass ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +no 𝐶 ) +no 𝐵 ) = ( 𝐴 +no ( 𝐶 +no 𝐵 ) ) )
6 5 3com23 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +no 𝐶 ) +no 𝐵 ) = ( 𝐴 +no ( 𝐶 +no 𝐵 ) ) )
7 3 4 6 3eqtr4d ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +no 𝐵 ) +no 𝐶 ) = ( ( 𝐴 +no 𝐶 ) +no 𝐵 ) )