Metamath Proof Explorer


Theorem nadd42

Description: Rearragement of terms in a quadruple sum. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Assertion nadd42 ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 +no 𝐵 ) +no ( 𝐶 +no 𝐷 ) ) = ( ( 𝐴 +no 𝐶 ) +no ( 𝐷 +no 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 nadd4 ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 +no 𝐵 ) +no ( 𝐶 +no 𝐷 ) ) = ( ( 𝐴 +no 𝐶 ) +no ( 𝐵 +no 𝐷 ) ) )
2 naddcom ( ( 𝐵 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐵 +no 𝐷 ) = ( 𝐷 +no 𝐵 ) )
3 2 ad2ant2l ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐵 +no 𝐷 ) = ( 𝐷 +no 𝐵 ) )
4 3 oveq2d ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 +no 𝐶 ) +no ( 𝐵 +no 𝐷 ) ) = ( ( 𝐴 +no 𝐶 ) +no ( 𝐷 +no 𝐵 ) ) )
5 1 4 eqtrd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 +no 𝐵 ) +no ( 𝐶 +no 𝐷 ) ) = ( ( 𝐴 +no 𝐶 ) +no ( 𝐷 +no 𝐵 ) ) )