Metamath Proof Explorer


Theorem naddasslem2

Description: Lemma for naddass . Expand out the expression for natural addition of three arguments. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Assertion naddasslem2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 +no ( 𝐵 +no 𝐶 ) ) = { 𝑥 ∈ On ∣ ( ∀ 𝑎𝐴 ( 𝑎 +no ( 𝐵 +no 𝐶 ) ) ∈ 𝑥 ∧ ∀ 𝑏𝐵 ( 𝐴 +no ( 𝑏 +no 𝐶 ) ) ∈ 𝑥 ∧ ∀ 𝑐𝐶 ( 𝐴 +no ( 𝐵 +no 𝑐 ) ) ∈ 𝑥 ) } )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐴 ∈ On )
2 naddcl ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) ∈ On )
3 2 3adant1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) ∈ On )
4 intmin ( 𝐴 ∈ On → { 𝑎 ∈ On ∣ 𝐴𝑎 } = 𝐴 )
5 4 eqcomd ( 𝐴 ∈ On → 𝐴 = { 𝑎 ∈ On ∣ 𝐴𝑎 } )
6 5 3ad2ant1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐴 = { 𝑎 ∈ On ∣ 𝐴𝑎 } )
7 naddov3 ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) = { 𝑝 ∈ On ∣ ( ( +no “ ( { 𝐵 } × 𝐶 ) ) ∪ ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ⊆ 𝑝 } )
8 7 3adant1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) = { 𝑝 ∈ On ∣ ( ( +no “ ( { 𝐵 } × 𝐶 ) ) ∪ ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ⊆ 𝑝 } )
9 1 3 6 8 naddunif ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 +no ( 𝐵 +no 𝐶 ) ) = { 𝑥 ∈ On ∣ ( ( +no “ ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ) ∪ ( +no “ ( { 𝐴 } × ( ( +no “ ( { 𝐵 } × 𝐶 ) ) ∪ ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ) ) ⊆ 𝑥 } )
10 3anass ( ( ( +no “ ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ) ⊆ 𝑥 ∧ ( +no “ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ⊆ 𝑥 ∧ ( +no “ ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ) ⊆ 𝑥 ) ↔ ( ( +no “ ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ) ⊆ 𝑥 ∧ ( ( +no “ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ⊆ 𝑥 ∧ ( +no “ ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ) ⊆ 𝑥 ) ) )
11 unss ( ( ( +no “ ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ) ⊆ 𝑥 ∧ ( +no “ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ⊆ 𝑥 ) ↔ ( ( +no “ ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ) ∪ ( +no “ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ) ⊆ 𝑥 )
12 ancom ( ( ( +no “ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ⊆ 𝑥 ∧ ( +no “ ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ) ⊆ 𝑥 ) ↔ ( ( +no “ ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ) ⊆ 𝑥 ∧ ( +no “ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ⊆ 𝑥 ) )
13 xpundi ( { 𝐴 } × ( ( +no “ ( { 𝐵 } × 𝐶 ) ) ∪ ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) = ( ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ∪ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) )
14 13 imaeq2i ( +no “ ( { 𝐴 } × ( ( +no “ ( { 𝐵 } × 𝐶 ) ) ∪ ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ) = ( +no “ ( ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ∪ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) )
15 imaundi ( +no “ ( ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ∪ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ) = ( ( +no “ ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ) ∪ ( +no “ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) )
16 14 15 eqtri ( +no “ ( { 𝐴 } × ( ( +no “ ( { 𝐵 } × 𝐶 ) ) ∪ ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ) = ( ( +no “ ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ) ∪ ( +no “ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) )
17 16 sseq1i ( ( +no “ ( { 𝐴 } × ( ( +no “ ( { 𝐵 } × 𝐶 ) ) ∪ ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ) ⊆ 𝑥 ↔ ( ( +no “ ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ) ∪ ( +no “ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ) ⊆ 𝑥 )
18 11 12 17 3bitr4i ( ( ( +no “ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ⊆ 𝑥 ∧ ( +no “ ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ) ⊆ 𝑥 ) ↔ ( +no “ ( { 𝐴 } × ( ( +no “ ( { 𝐵 } × 𝐶 ) ) ∪ ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ) ⊆ 𝑥 )
19 18 anbi2i ( ( ( +no “ ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ) ⊆ 𝑥 ∧ ( ( +no “ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ⊆ 𝑥 ∧ ( +no “ ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ) ⊆ 𝑥 ) ) ↔ ( ( +no “ ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ) ⊆ 𝑥 ∧ ( +no “ ( { 𝐴 } × ( ( +no “ ( { 𝐵 } × 𝐶 ) ) ∪ ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ) ⊆ 𝑥 ) )
20 unss ( ( ( +no “ ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ) ⊆ 𝑥 ∧ ( +no “ ( { 𝐴 } × ( ( +no “ ( { 𝐵 } × 𝐶 ) ) ∪ ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ) ⊆ 𝑥 ) ↔ ( ( +no “ ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ) ∪ ( +no “ ( { 𝐴 } × ( ( +no “ ( { 𝐵 } × 𝐶 ) ) ∪ ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ) ) ⊆ 𝑥 )
21 10 19 20 3bitrri ( ( ( +no “ ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ) ∪ ( +no “ ( { 𝐴 } × ( ( +no “ ( { 𝐵 } × 𝐶 ) ) ∪ ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ) ) ⊆ 𝑥 ↔ ( ( +no “ ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ) ⊆ 𝑥 ∧ ( +no “ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ⊆ 𝑥 ∧ ( +no “ ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ) ⊆ 𝑥 ) )
22 naddfn +no Fn ( On × On )
23 fnfun ( +no Fn ( On × On ) → Fun +no )
24 22 23 ax-mp Fun +no
25 onss ( 𝐴 ∈ On → 𝐴 ⊆ On )
26 25 3ad2ant1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐴 ⊆ On )
27 3 adantr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( 𝐵 +no 𝐶 ) ∈ On )
28 27 snssd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → { ( 𝐵 +no 𝐶 ) } ⊆ On )
29 xpss12 ( ( 𝐴 ⊆ On ∧ { ( 𝐵 +no 𝐶 ) } ⊆ On ) → ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ⊆ ( On × On ) )
30 26 28 29 syl2an2r ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ⊆ ( On × On ) )
31 22 fndmi dom +no = ( On × On )
32 30 31 sseqtrrdi ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ⊆ dom +no )
33 funimassov ( ( Fun +no ∧ ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ⊆ dom +no ) → ( ( +no “ ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ) ⊆ 𝑥 ↔ ∀ 𝑎𝐴𝑝 ∈ { ( 𝐵 +no 𝐶 ) } ( 𝑎 +no 𝑝 ) ∈ 𝑥 ) )
34 24 32 33 sylancr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( ( +no “ ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ) ⊆ 𝑥 ↔ ∀ 𝑎𝐴𝑝 ∈ { ( 𝐵 +no 𝐶 ) } ( 𝑎 +no 𝑝 ) ∈ 𝑥 ) )
35 ovex ( 𝐵 +no 𝐶 ) ∈ V
36 oveq2 ( 𝑝 = ( 𝐵 +no 𝐶 ) → ( 𝑎 +no 𝑝 ) = ( 𝑎 +no ( 𝐵 +no 𝐶 ) ) )
37 36 eleq1d ( 𝑝 = ( 𝐵 +no 𝐶 ) → ( ( 𝑎 +no 𝑝 ) ∈ 𝑥 ↔ ( 𝑎 +no ( 𝐵 +no 𝐶 ) ) ∈ 𝑥 ) )
38 35 37 ralsn ( ∀ 𝑝 ∈ { ( 𝐵 +no 𝐶 ) } ( 𝑎 +no 𝑝 ) ∈ 𝑥 ↔ ( 𝑎 +no ( 𝐵 +no 𝐶 ) ) ∈ 𝑥 )
39 38 ralbii ( ∀ 𝑎𝐴𝑝 ∈ { ( 𝐵 +no 𝐶 ) } ( 𝑎 +no 𝑝 ) ∈ 𝑥 ↔ ∀ 𝑎𝐴 ( 𝑎 +no ( 𝐵 +no 𝐶 ) ) ∈ 𝑥 )
40 34 39 bitrdi ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( ( +no “ ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ) ⊆ 𝑥 ↔ ∀ 𝑎𝐴 ( 𝑎 +no ( 𝐵 +no 𝐶 ) ) ∈ 𝑥 ) )
41 simpl1 ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → 𝐴 ∈ On )
42 41 snssd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → { 𝐴 } ⊆ On )
43 imassrn ( +no “ ( 𝐵 × { 𝐶 } ) ) ⊆ ran +no
44 naddf +no : ( On × On ) ⟶ On
45 frn ( +no : ( On × On ) ⟶ On → ran +no ⊆ On )
46 44 45 ax-mp ran +no ⊆ On
47 43 46 sstri ( +no “ ( 𝐵 × { 𝐶 } ) ) ⊆ On
48 xpss12 ( ( { 𝐴 } ⊆ On ∧ ( +no “ ( 𝐵 × { 𝐶 } ) ) ⊆ On ) → ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ⊆ ( On × On ) )
49 42 47 48 sylancl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ⊆ ( On × On ) )
50 49 31 sseqtrrdi ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ⊆ dom +no )
51 funimassov ( ( Fun +no ∧ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ⊆ dom +no ) → ( ( +no “ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ⊆ 𝑥 ↔ ∀ 𝑎 ∈ { 𝐴 } ∀ 𝑝 ∈ ( +no “ ( 𝐵 × { 𝐶 } ) ) ( 𝑎 +no 𝑝 ) ∈ 𝑥 ) )
52 24 50 51 sylancr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( ( +no “ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ⊆ 𝑥 ↔ ∀ 𝑎 ∈ { 𝐴 } ∀ 𝑝 ∈ ( +no “ ( 𝐵 × { 𝐶 } ) ) ( 𝑎 +no 𝑝 ) ∈ 𝑥 ) )
53 oveq1 ( 𝑎 = 𝐴 → ( 𝑎 +no 𝑝 ) = ( 𝐴 +no 𝑝 ) )
54 53 eleq1d ( 𝑎 = 𝐴 → ( ( 𝑎 +no 𝑝 ) ∈ 𝑥 ↔ ( 𝐴 +no 𝑝 ) ∈ 𝑥 ) )
55 54 ralbidv ( 𝑎 = 𝐴 → ( ∀ 𝑝 ∈ ( +no “ ( 𝐵 × { 𝐶 } ) ) ( 𝑎 +no 𝑝 ) ∈ 𝑥 ↔ ∀ 𝑝 ∈ ( +no “ ( 𝐵 × { 𝐶 } ) ) ( 𝐴 +no 𝑝 ) ∈ 𝑥 ) )
56 55 ralsng ( 𝐴 ∈ On → ( ∀ 𝑎 ∈ { 𝐴 } ∀ 𝑝 ∈ ( +no “ ( 𝐵 × { 𝐶 } ) ) ( 𝑎 +no 𝑝 ) ∈ 𝑥 ↔ ∀ 𝑝 ∈ ( +no “ ( 𝐵 × { 𝐶 } ) ) ( 𝐴 +no 𝑝 ) ∈ 𝑥 ) )
57 41 56 syl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( ∀ 𝑎 ∈ { 𝐴 } ∀ 𝑝 ∈ ( +no “ ( 𝐵 × { 𝐶 } ) ) ( 𝑎 +no 𝑝 ) ∈ 𝑥 ↔ ∀ 𝑝 ∈ ( +no “ ( 𝐵 × { 𝐶 } ) ) ( 𝐴 +no 𝑝 ) ∈ 𝑥 ) )
58 onss ( 𝐵 ∈ On → 𝐵 ⊆ On )
59 58 3ad2ant2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐵 ⊆ On )
60 simpl3 ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → 𝐶 ∈ On )
61 60 snssd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → { 𝐶 } ⊆ On )
62 xpss12 ( ( 𝐵 ⊆ On ∧ { 𝐶 } ⊆ On ) → ( 𝐵 × { 𝐶 } ) ⊆ ( On × On ) )
63 59 61 62 syl2an2r ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( 𝐵 × { 𝐶 } ) ⊆ ( On × On ) )
64 oveq2 ( 𝑝 = ( 𝑏 +no 𝑐 ) → ( 𝐴 +no 𝑝 ) = ( 𝐴 +no ( 𝑏 +no 𝑐 ) ) )
65 64 eleq1d ( 𝑝 = ( 𝑏 +no 𝑐 ) → ( ( 𝐴 +no 𝑝 ) ∈ 𝑥 ↔ ( 𝐴 +no ( 𝑏 +no 𝑐 ) ) ∈ 𝑥 ) )
66 65 imaeqalov ( ( +no Fn ( On × On ) ∧ ( 𝐵 × { 𝐶 } ) ⊆ ( On × On ) ) → ( ∀ 𝑝 ∈ ( +no “ ( 𝐵 × { 𝐶 } ) ) ( 𝐴 +no 𝑝 ) ∈ 𝑥 ↔ ∀ 𝑏𝐵𝑐 ∈ { 𝐶 } ( 𝐴 +no ( 𝑏 +no 𝑐 ) ) ∈ 𝑥 ) )
67 22 63 66 sylancr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( ∀ 𝑝 ∈ ( +no “ ( 𝐵 × { 𝐶 } ) ) ( 𝐴 +no 𝑝 ) ∈ 𝑥 ↔ ∀ 𝑏𝐵𝑐 ∈ { 𝐶 } ( 𝐴 +no ( 𝑏 +no 𝑐 ) ) ∈ 𝑥 ) )
68 oveq2 ( 𝑐 = 𝐶 → ( 𝑏 +no 𝑐 ) = ( 𝑏 +no 𝐶 ) )
69 68 oveq2d ( 𝑐 = 𝐶 → ( 𝐴 +no ( 𝑏 +no 𝑐 ) ) = ( 𝐴 +no ( 𝑏 +no 𝐶 ) ) )
70 69 eleq1d ( 𝑐 = 𝐶 → ( ( 𝐴 +no ( 𝑏 +no 𝑐 ) ) ∈ 𝑥 ↔ ( 𝐴 +no ( 𝑏 +no 𝐶 ) ) ∈ 𝑥 ) )
71 70 ralsng ( 𝐶 ∈ On → ( ∀ 𝑐 ∈ { 𝐶 } ( 𝐴 +no ( 𝑏 +no 𝑐 ) ) ∈ 𝑥 ↔ ( 𝐴 +no ( 𝑏 +no 𝐶 ) ) ∈ 𝑥 ) )
72 60 71 syl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( ∀ 𝑐 ∈ { 𝐶 } ( 𝐴 +no ( 𝑏 +no 𝑐 ) ) ∈ 𝑥 ↔ ( 𝐴 +no ( 𝑏 +no 𝐶 ) ) ∈ 𝑥 ) )
73 72 ralbidv ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( ∀ 𝑏𝐵𝑐 ∈ { 𝐶 } ( 𝐴 +no ( 𝑏 +no 𝑐 ) ) ∈ 𝑥 ↔ ∀ 𝑏𝐵 ( 𝐴 +no ( 𝑏 +no 𝐶 ) ) ∈ 𝑥 ) )
74 67 73 bitrd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( ∀ 𝑝 ∈ ( +no “ ( 𝐵 × { 𝐶 } ) ) ( 𝐴 +no 𝑝 ) ∈ 𝑥 ↔ ∀ 𝑏𝐵 ( 𝐴 +no ( 𝑏 +no 𝐶 ) ) ∈ 𝑥 ) )
75 52 57 74 3bitrd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( ( +no “ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ⊆ 𝑥 ↔ ∀ 𝑏𝐵 ( 𝐴 +no ( 𝑏 +no 𝐶 ) ) ∈ 𝑥 ) )
76 imassrn ( +no “ ( { 𝐵 } × 𝐶 ) ) ⊆ ran +no
77 76 46 sstri ( +no “ ( { 𝐵 } × 𝐶 ) ) ⊆ On
78 xpss12 ( ( { 𝐴 } ⊆ On ∧ ( +no “ ( { 𝐵 } × 𝐶 ) ) ⊆ On ) → ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ⊆ ( On × On ) )
79 42 77 78 sylancl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ⊆ ( On × On ) )
80 79 31 sseqtrrdi ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ⊆ dom +no )
81 funimassov ( ( Fun +no ∧ ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ⊆ dom +no ) → ( ( +no “ ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ) ⊆ 𝑥 ↔ ∀ 𝑎 ∈ { 𝐴 } ∀ 𝑝 ∈ ( +no “ ( { 𝐵 } × 𝐶 ) ) ( 𝑎 +no 𝑝 ) ∈ 𝑥 ) )
82 24 80 81 sylancr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( ( +no “ ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ) ⊆ 𝑥 ↔ ∀ 𝑎 ∈ { 𝐴 } ∀ 𝑝 ∈ ( +no “ ( { 𝐵 } × 𝐶 ) ) ( 𝑎 +no 𝑝 ) ∈ 𝑥 ) )
83 54 ralbidv ( 𝑎 = 𝐴 → ( ∀ 𝑝 ∈ ( +no “ ( { 𝐵 } × 𝐶 ) ) ( 𝑎 +no 𝑝 ) ∈ 𝑥 ↔ ∀ 𝑝 ∈ ( +no “ ( { 𝐵 } × 𝐶 ) ) ( 𝐴 +no 𝑝 ) ∈ 𝑥 ) )
84 83 ralsng ( 𝐴 ∈ On → ( ∀ 𝑎 ∈ { 𝐴 } ∀ 𝑝 ∈ ( +no “ ( { 𝐵 } × 𝐶 ) ) ( 𝑎 +no 𝑝 ) ∈ 𝑥 ↔ ∀ 𝑝 ∈ ( +no “ ( { 𝐵 } × 𝐶 ) ) ( 𝐴 +no 𝑝 ) ∈ 𝑥 ) )
85 41 84 syl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( ∀ 𝑎 ∈ { 𝐴 } ∀ 𝑝 ∈ ( +no “ ( { 𝐵 } × 𝐶 ) ) ( 𝑎 +no 𝑝 ) ∈ 𝑥 ↔ ∀ 𝑝 ∈ ( +no “ ( { 𝐵 } × 𝐶 ) ) ( 𝐴 +no 𝑝 ) ∈ 𝑥 ) )
86 simpl2 ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → 𝐵 ∈ On )
87 86 snssd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → { 𝐵 } ⊆ On )
88 onss ( 𝐶 ∈ On → 𝐶 ⊆ On )
89 88 3ad2ant3 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐶 ⊆ On )
90 89 adantr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → 𝐶 ⊆ On )
91 xpss12 ( ( { 𝐵 } ⊆ On ∧ 𝐶 ⊆ On ) → ( { 𝐵 } × 𝐶 ) ⊆ ( On × On ) )
92 87 90 91 syl2anc ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( { 𝐵 } × 𝐶 ) ⊆ ( On × On ) )
93 65 imaeqalov ( ( +no Fn ( On × On ) ∧ ( { 𝐵 } × 𝐶 ) ⊆ ( On × On ) ) → ( ∀ 𝑝 ∈ ( +no “ ( { 𝐵 } × 𝐶 ) ) ( 𝐴 +no 𝑝 ) ∈ 𝑥 ↔ ∀ 𝑏 ∈ { 𝐵 } ∀ 𝑐𝐶 ( 𝐴 +no ( 𝑏 +no 𝑐 ) ) ∈ 𝑥 ) )
94 22 92 93 sylancr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( ∀ 𝑝 ∈ ( +no “ ( { 𝐵 } × 𝐶 ) ) ( 𝐴 +no 𝑝 ) ∈ 𝑥 ↔ ∀ 𝑏 ∈ { 𝐵 } ∀ 𝑐𝐶 ( 𝐴 +no ( 𝑏 +no 𝑐 ) ) ∈ 𝑥 ) )
95 oveq1 ( 𝑏 = 𝐵 → ( 𝑏 +no 𝑐 ) = ( 𝐵 +no 𝑐 ) )
96 95 oveq2d ( 𝑏 = 𝐵 → ( 𝐴 +no ( 𝑏 +no 𝑐 ) ) = ( 𝐴 +no ( 𝐵 +no 𝑐 ) ) )
97 96 eleq1d ( 𝑏 = 𝐵 → ( ( 𝐴 +no ( 𝑏 +no 𝑐 ) ) ∈ 𝑥 ↔ ( 𝐴 +no ( 𝐵 +no 𝑐 ) ) ∈ 𝑥 ) )
98 97 ralbidv ( 𝑏 = 𝐵 → ( ∀ 𝑐𝐶 ( 𝐴 +no ( 𝑏 +no 𝑐 ) ) ∈ 𝑥 ↔ ∀ 𝑐𝐶 ( 𝐴 +no ( 𝐵 +no 𝑐 ) ) ∈ 𝑥 ) )
99 98 ralsng ( 𝐵 ∈ On → ( ∀ 𝑏 ∈ { 𝐵 } ∀ 𝑐𝐶 ( 𝐴 +no ( 𝑏 +no 𝑐 ) ) ∈ 𝑥 ↔ ∀ 𝑐𝐶 ( 𝐴 +no ( 𝐵 +no 𝑐 ) ) ∈ 𝑥 ) )
100 86 99 syl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( ∀ 𝑏 ∈ { 𝐵 } ∀ 𝑐𝐶 ( 𝐴 +no ( 𝑏 +no 𝑐 ) ) ∈ 𝑥 ↔ ∀ 𝑐𝐶 ( 𝐴 +no ( 𝐵 +no 𝑐 ) ) ∈ 𝑥 ) )
101 94 100 bitrd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( ∀ 𝑝 ∈ ( +no “ ( { 𝐵 } × 𝐶 ) ) ( 𝐴 +no 𝑝 ) ∈ 𝑥 ↔ ∀ 𝑐𝐶 ( 𝐴 +no ( 𝐵 +no 𝑐 ) ) ∈ 𝑥 ) )
102 82 85 101 3bitrd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( ( +no “ ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ) ⊆ 𝑥 ↔ ∀ 𝑐𝐶 ( 𝐴 +no ( 𝐵 +no 𝑐 ) ) ∈ 𝑥 ) )
103 40 75 102 3anbi123d ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( ( ( +no “ ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ) ⊆ 𝑥 ∧ ( +no “ ( { 𝐴 } × ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ⊆ 𝑥 ∧ ( +no “ ( { 𝐴 } × ( +no “ ( { 𝐵 } × 𝐶 ) ) ) ) ⊆ 𝑥 ) ↔ ( ∀ 𝑎𝐴 ( 𝑎 +no ( 𝐵 +no 𝐶 ) ) ∈ 𝑥 ∧ ∀ 𝑏𝐵 ( 𝐴 +no ( 𝑏 +no 𝐶 ) ) ∈ 𝑥 ∧ ∀ 𝑐𝐶 ( 𝐴 +no ( 𝐵 +no 𝑐 ) ) ∈ 𝑥 ) ) )
104 21 103 bitrid ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ On ) → ( ( ( +no “ ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ) ∪ ( +no “ ( { 𝐴 } × ( ( +no “ ( { 𝐵 } × 𝐶 ) ) ∪ ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ) ) ⊆ 𝑥 ↔ ( ∀ 𝑎𝐴 ( 𝑎 +no ( 𝐵 +no 𝐶 ) ) ∈ 𝑥 ∧ ∀ 𝑏𝐵 ( 𝐴 +no ( 𝑏 +no 𝐶 ) ) ∈ 𝑥 ∧ ∀ 𝑐𝐶 ( 𝐴 +no ( 𝐵 +no 𝑐 ) ) ∈ 𝑥 ) ) )
105 104 rabbidva ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → { 𝑥 ∈ On ∣ ( ( +no “ ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ) ∪ ( +no “ ( { 𝐴 } × ( ( +no “ ( { 𝐵 } × 𝐶 ) ) ∪ ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ) ) ⊆ 𝑥 } = { 𝑥 ∈ On ∣ ( ∀ 𝑎𝐴 ( 𝑎 +no ( 𝐵 +no 𝐶 ) ) ∈ 𝑥 ∧ ∀ 𝑏𝐵 ( 𝐴 +no ( 𝑏 +no 𝐶 ) ) ∈ 𝑥 ∧ ∀ 𝑐𝐶 ( 𝐴 +no ( 𝐵 +no 𝑐 ) ) ∈ 𝑥 ) } )
106 105 inteqd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → { 𝑥 ∈ On ∣ ( ( +no “ ( 𝐴 × { ( 𝐵 +no 𝐶 ) } ) ) ∪ ( +no “ ( { 𝐴 } × ( ( +no “ ( { 𝐵 } × 𝐶 ) ) ∪ ( +no “ ( 𝐵 × { 𝐶 } ) ) ) ) ) ) ⊆ 𝑥 } = { 𝑥 ∈ On ∣ ( ∀ 𝑎𝐴 ( 𝑎 +no ( 𝐵 +no 𝐶 ) ) ∈ 𝑥 ∧ ∀ 𝑏𝐵 ( 𝐴 +no ( 𝑏 +no 𝐶 ) ) ∈ 𝑥 ∧ ∀ 𝑐𝐶 ( 𝐴 +no ( 𝐵 +no 𝑐 ) ) ∈ 𝑥 ) } )
107 9 106 eqtrd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 +no ( 𝐵 +no 𝐶 ) ) = { 𝑥 ∈ On ∣ ( ∀ 𝑎𝐴 ( 𝑎 +no ( 𝐵 +no 𝐶 ) ) ∈ 𝑥 ∧ ∀ 𝑏𝐵 ( 𝐴 +no ( 𝑏 +no 𝐶 ) ) ∈ 𝑥 ∧ ∀ 𝑐𝐶 ( 𝐴 +no ( 𝐵 +no 𝑐 ) ) ∈ 𝑥 ) } )