Step |
Hyp |
Ref |
Expression |
1 |
|
simprr |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → 𝐵 ∈ 𝐷 ) |
2 |
|
onelon |
⊢ ( ( 𝐷 ∈ On ∧ 𝐵 ∈ 𝐷 ) → 𝐵 ∈ On ) |
3 |
2
|
ad2ant2l |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → 𝐵 ∈ On ) |
4 |
|
simplr |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → 𝐷 ∈ On ) |
5 |
|
onelon |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ On ) |
6 |
5
|
ad2ant2r |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → 𝐴 ∈ On ) |
7 |
|
naddel2 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐷 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ 𝐷 ↔ ( 𝐴 +no 𝐵 ) ∈ ( 𝐴 +no 𝐷 ) ) ) |
8 |
3 4 6 7
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → ( 𝐵 ∈ 𝐷 ↔ ( 𝐴 +no 𝐵 ) ∈ ( 𝐴 +no 𝐷 ) ) ) |
9 |
1 8
|
mpbid |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → ( 𝐴 +no 𝐵 ) ∈ ( 𝐴 +no 𝐷 ) ) |
10 |
|
simprl |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → 𝐴 ∈ 𝐶 ) |
11 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → 𝐶 ∈ On ) |
12 |
|
naddel1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 +no 𝐷 ) ∈ ( 𝐶 +no 𝐷 ) ) ) |
13 |
6 11 4 12
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 +no 𝐷 ) ∈ ( 𝐶 +no 𝐷 ) ) ) |
14 |
10 13
|
mpbid |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → ( 𝐴 +no 𝐷 ) ∈ ( 𝐶 +no 𝐷 ) ) |
15 |
|
naddcl |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐶 +no 𝐷 ) ∈ On ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → ( 𝐶 +no 𝐷 ) ∈ On ) |
17 |
|
ontr1 |
⊢ ( ( 𝐶 +no 𝐷 ) ∈ On → ( ( ( 𝐴 +no 𝐵 ) ∈ ( 𝐴 +no 𝐷 ) ∧ ( 𝐴 +no 𝐷 ) ∈ ( 𝐶 +no 𝐷 ) ) → ( 𝐴 +no 𝐵 ) ∈ ( 𝐶 +no 𝐷 ) ) ) |
18 |
16 17
|
syl |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → ( ( ( 𝐴 +no 𝐵 ) ∈ ( 𝐴 +no 𝐷 ) ∧ ( 𝐴 +no 𝐷 ) ∈ ( 𝐶 +no 𝐷 ) ) → ( 𝐴 +no 𝐵 ) ∈ ( 𝐶 +no 𝐷 ) ) ) |
19 |
9 14 18
|
mp2and |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → ( 𝐴 +no 𝐵 ) ∈ ( 𝐶 +no 𝐷 ) ) |
20 |
19
|
ex |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 +no 𝐵 ) ∈ ( 𝐶 +no 𝐷 ) ) ) |