Metamath Proof Explorer


Theorem naddel12

Description: Natural addition to both sides of ordinal less-than. (Contributed by Scott Fenton, 7-Feb-2025)

Ref Expression
Assertion naddel12 ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 +no 𝐵 ) ∈ ( 𝐶 +no 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 simprr ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴𝐶𝐵𝐷 ) ) → 𝐵𝐷 )
2 onelon ( ( 𝐷 ∈ On ∧ 𝐵𝐷 ) → 𝐵 ∈ On )
3 2 ad2ant2l ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴𝐶𝐵𝐷 ) ) → 𝐵 ∈ On )
4 simplr ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴𝐶𝐵𝐷 ) ) → 𝐷 ∈ On )
5 onelon ( ( 𝐶 ∈ On ∧ 𝐴𝐶 ) → 𝐴 ∈ On )
6 5 ad2ant2r ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴𝐶𝐵𝐷 ) ) → 𝐴 ∈ On )
7 naddel2 ( ( 𝐵 ∈ On ∧ 𝐷 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵𝐷 ↔ ( 𝐴 +no 𝐵 ) ∈ ( 𝐴 +no 𝐷 ) ) )
8 3 4 6 7 syl3anc ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴𝐶𝐵𝐷 ) ) → ( 𝐵𝐷 ↔ ( 𝐴 +no 𝐵 ) ∈ ( 𝐴 +no 𝐷 ) ) )
9 1 8 mpbid ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴𝐶𝐵𝐷 ) ) → ( 𝐴 +no 𝐵 ) ∈ ( 𝐴 +no 𝐷 ) )
10 simprl ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴𝐶𝐵𝐷 ) ) → 𝐴𝐶 )
11 simpll ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴𝐶𝐵𝐷 ) ) → 𝐶 ∈ On )
12 naddel1 ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐴𝐶 ↔ ( 𝐴 +no 𝐷 ) ∈ ( 𝐶 +no 𝐷 ) ) )
13 6 11 4 12 syl3anc ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴𝐶𝐵𝐷 ) ) → ( 𝐴𝐶 ↔ ( 𝐴 +no 𝐷 ) ∈ ( 𝐶 +no 𝐷 ) ) )
14 10 13 mpbid ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴𝐶𝐵𝐷 ) ) → ( 𝐴 +no 𝐷 ) ∈ ( 𝐶 +no 𝐷 ) )
15 naddcl ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐶 +no 𝐷 ) ∈ On )
16 15 adantr ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴𝐶𝐵𝐷 ) ) → ( 𝐶 +no 𝐷 ) ∈ On )
17 ontr1 ( ( 𝐶 +no 𝐷 ) ∈ On → ( ( ( 𝐴 +no 𝐵 ) ∈ ( 𝐴 +no 𝐷 ) ∧ ( 𝐴 +no 𝐷 ) ∈ ( 𝐶 +no 𝐷 ) ) → ( 𝐴 +no 𝐵 ) ∈ ( 𝐶 +no 𝐷 ) ) )
18 16 17 syl ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴𝐶𝐵𝐷 ) ) → ( ( ( 𝐴 +no 𝐵 ) ∈ ( 𝐴 +no 𝐷 ) ∧ ( 𝐴 +no 𝐷 ) ∈ ( 𝐶 +no 𝐷 ) ) → ( 𝐴 +no 𝐵 ) ∈ ( 𝐶 +no 𝐷 ) ) )
19 9 14 18 mp2and ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴𝐶𝐵𝐷 ) ) → ( 𝐴 +no 𝐵 ) ∈ ( 𝐶 +no 𝐷 ) )
20 19 ex ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 +no 𝐵 ) ∈ ( 𝐶 +no 𝐷 ) ) )